Mode and modulation characteristics for microsquare lasers with a vertex output waveguide

  • Heng Long
  • YongZhen HuangEmail author
  • YueDe Yang
  • LingXiu Zou
  • JinLong Xiao
  • ZhiXiong Xiao
Article Special Topic: Microcavity Photonics


The mode and high-speed modulation characteristics are investigated for a microsquare laser with a side length of 16 μm and a 2-μm-wide output waveguide connected to one vertex. The longitudinal and transverse mode characteristics are analyzed by numerical simulation and light ray model, and compared with the lasing spectra for the microsquare laser. Up to the fifth transverse mode is observed clearly from the lasing spectra. Single mode operation with the side mode suppression ratio of 41 dB is realized at the injection current of 24 mA, and the maximum output power of 0.53 (0.18) mW coupled into the multiple (single) mode fiber is obtained at the current of 35 mA, for the microsquare laser at the temperature of 288 K. Furthermore, a flat small-signal modulation response is reached with the 3-dB bandwidth of 16.2 GHz and the resonant peak of 3.6 dB at the bias current of 34 mA. The K-factor of 0.22 ns is obtained by fitting the damping factor versus the resonant frequency, which implies a maximum intrinsic 3-dB bandwidth of 40 GHz.


microcavity modulation fabrication techniques semiconductor laser 


  1. 1.
    Poon A W, Courvoisier R, Chang R K. Multimode resonances in square-shaped optical microcavities. Opt Lett, 2001; 26: 632–634CrossRefADSGoogle Scholar
  2. 2.
    Moon H J, An K, Lee J H. Single spatial mode selection in a layered square microcavity laser. Appl Phys Lett, 2003; 82: 2963–2965CrossRefADSGoogle Scholar
  3. 3.
    Guo W H, Huang Y Z, Lu Q Y, et al. Modes in square resonators. IEEE J Quantum Electron, 2003; 39: 1563–1566CrossRefADSGoogle Scholar
  4. 4.
    Levi A F J, Slusher R E, McCall S L, et al. Directional light coupling from microdisk lasers. Appl Phys Lett, 1993; 62: 561–563CrossRefADSGoogle Scholar
  5. 5.
    Jiang X F, Xiao Y F, Zou C L, et al. Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities. Adv Mater, 2012, 24: OP260OP264Google Scholar
  6. 6.
    Van Campenhout J, Rojo Romeo P, Regreny P, et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt Express, 2007, 15: 67446749CrossRefGoogle Scholar
  7. 7.
    Huang Y Z, Che K J, Yang Y D, et al. Directional emission InP/GaInAsP square-resonator microlasers. Opt Lett, 2008, 33: 21702172Google Scholar
  8. 8.
    Che K J, Lin J D, Huang Y Z, et al. InGaAsPInP square microlasers with a vertex output waveguide. IEEE Photon Technol Lett, 2010; 22: 1370–1372CrossRefADSGoogle Scholar
  9. 9.
    Che K J, Yao Q F, Huang Y Z, et al. Multiple-port InP/InGaAsP square-resonator microlasers. IEEE J Sel Top Quantum Electron, 2011; 17: 1656–1661CrossRefGoogle Scholar
  10. 10.
    Huang Y Z, Lv X M, Lin J D, et al. Output characteristics of square and circular resonator microlasers connected with two output waveguides. Sci China Tech Sci, 2013; 56: 538–542CrossRefGoogle Scholar
  11. 11.
    Long H, Huang Y Z, Yang Y D, et al. Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers. IEEE J Quantum Electron, 2014; 50: 981–989CrossRefADSGoogle Scholar
  12. 12.
    Shambat G, Ellis B, Majumdar A, et al. Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode. Nat Commun, 2011; 2: 5391–5396CrossRefGoogle Scholar
  13. 13.
    Matsuo S, Shinya A, Chen C H, et al. 20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption. Opt Express, 2011; 19: 2242–2250CrossRefADSGoogle Scholar
  14. 14.
    Lv X M, Huang Y Z, Zou L X, et al. Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor. Laser Photon Rev, 2013; 7: 818–829CrossRefGoogle Scholar
  15. 15.
    Zou L X, Huang Y Z, Liu B W, et al. Thermal and high speed modulation characteristics for AlGaInAs/InP micro lasers. Opt Express, 2015; 23: 2879–2888CrossRefADSGoogle Scholar
  16. 16.
    Long H, Huang Y Z, Yang Y D, et al. High-speed direct-modulated unidirectional emission square microlasers. J Lightwave Technol, 2015; 33: 787–794CrossRefADSGoogle Scholar
  17. 17.
    Lv X M, Huang Y Z, Yang Y D, et al. Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers. Appl Phys Lett, 2014, 104: 161101CrossRefADSGoogle Scholar
  18. 18.
    Lee C W, Wang Q, Lai Y C, et al. Continuous-wave InP-InGaAsP microsquare laserA comparison to microdisk laser. IEEE Photon Technol Lett, 2014; 26: 2442–2445CrossRefADSGoogle Scholar
  19. 19.
    Guo W H, Li W J, Huang Y Z. Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation. IEEE Microw Wireless Compon Lett, 2001; 11: 223–225CrossRefGoogle Scholar
  20. 20.
    Huang Y Z, Chen Q, Guo W H, et al. Experimental observation of resonant modes in GaInAsP microsquare resonators. IEEE Photon Technol Lett, 2005; 17: 2589–2591CrossRefADSGoogle Scholar
  21. 21.
    Che K J, Yang Y D, Huang Y Z. Multimode resonances in metallically confined square-resonator microlasers. Appl Phys Lett, 2010, 96: 051104CrossRefADSGoogle Scholar
  22. 22.
    Westbergh P, Gustavsson J S, Kögel B, et al. Impact of photon lifetime on high-speed VCSEL performance. IEEE J Sel Top Quantum Electron, 2011; 17: 1603–1613CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Heng Long
    • 1
  • YongZhen Huang
    • 1
    Email author
  • YueDe Yang
    • 1
  • LingXiu Zou
    • 1
  • JinLong Xiao
    • 1
  • ZhiXiong Xiao
    • 1
  1. 1.State Key Laboratory on Integrated Optoelectronics, Institute of SemiconductorsChinese Academy of SciencesBeijingChina

Personalised recommendations