Principles of electromagnetic waves in metasurfaces

  • XianGang LuoEmail author


Metasurfaces are artificially structured thin films with unusual properties on demand. Different from metamaterials, the metasurfaces change the electromagnetic waves mainly by exploiting the boundary conditions, rather than the constitutive parameters in three dimensional (3D) spaces. Despite the intrinsic similarities in the operational principles there is not a universal theory available for the understanding and design of metasurface-based devices. In this article, we propose the concept of metasurface waves (M-waves) and provide a general theory to describe the principles of them. Most importantly, it is shown that the M-waves share some fundamental properties such as extremely short wavelength, abrupt phase change and strong chromatic dispersion, which make them different from traditional bulk waves. It is shown that these properties can enable many important applications such as subwavelength imaging and lithography, planar optical devices, broadband anti-reflection, absorption and polarization conversion. Our results demonstrated unambiguously that traditional laws of diffraction, refraction, reflection and absorption should be revised by using the novel properties of M-waves. The theory provided here may pave the way for the design of new electromagnetic devices and further improvement of metasurfaces. The exotic properties of metasurfaces may also form the foundations for two new sub-disciplines called “subwavelength surface electromagnetics” and “subwavelength electromagnetics”.


metasurface subwavelength structure diffraction limit flat lens perfect absorption 


  1. 1.
    Lauterbach M A. Finding, defining and breaking the diffraction barrier in microscopy–a historical perspective. Opt Nanoscopy, 2012, 1: 1–8CrossRefGoogle Scholar
  2. 2.
    Stelzer E H K, Grill S. The uncertainty principle applied to estimate focal spot dimensions. Opt Commun, 2000, 173: 51–56ADSCrossRefGoogle Scholar
  3. 3.
    Zheludev N I. What diffraction limit? Nat Mater, 2008, 7: 420–422ADSCrossRefGoogle Scholar
  4. 4.
    Saleh B E A, Teich M C. Fundamentals of Photonics. 2nd ed. New Jersey: Wiley & Sons, 2007Google Scholar
  5. 5.
    Aieta F, Kats M A, Genevet P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 2015, 347: 1342–1345ADSCrossRefGoogle Scholar
  6. 6.
    Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424: 824–830ADSCrossRefGoogle Scholar
  7. 7.
    Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312: 1780–1782zbMATHMathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Pendry J B. Negative refraction makes a perfect lens. Phys Rev Lett, 2000, 85: 3966–3969ADSCrossRefGoogle Scholar
  9. 9.
    Bloembergen N, Pershan P S. Light waves at the boundary of nonlinear media. Phys Rev, 1962, 128: 606–622zbMATHMathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Hao J, Yuan Y, Ran L, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys Rev Lett, 2007, 99: 063908ADSCrossRefGoogle Scholar
  11. 11.
    Pu M, Chen P, Wang Y, et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl Phys Lett, 2013, 102: 131906ADSCrossRefGoogle Scholar
  12. 12.
    Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 2013, 340: 1304–1307ADSCrossRefGoogle Scholar
  13. 13.
    Guo Y, Wang Y, Pu M, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Sci Rep, 2015, 5: 8434ADSCrossRefGoogle Scholar
  14. 14.
    Knott E F, Lunden C D. The two-sheet capacitive Jaumann absorber. IEEE Trans Antennas Propag, 1995, 43: 1339–1343ADSCrossRefGoogle Scholar
  15. 15.
    Zadeh A K, Karlsson A. Capacitive circuit method for fast and efficient design of wideband radar absorbers. IEEE Trans Antennas Propag, 2009, 57: 2307–2314ADSCrossRefGoogle Scholar
  16. 16.
    Pu M, Hu C, Wang M, et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt Express, 2011, 19: 17413–17420ADSCrossRefGoogle Scholar
  17. 17.
    Feng Q, Pu M, Hu C, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt Lett, 2012, 37: 2133–2135ADSCrossRefGoogle Scholar
  18. 18.
    Ye D, Wang Z, Xu K, et al. Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption. Phys Rev Lett, 2013, 111: 187402ADSCrossRefGoogle Scholar
  19. 19.
    Zhao Y, Liu X X, Alù A. Recent advances on optical metasurfaces. J Opt, 2014, 16: 123001ADSCrossRefGoogle Scholar
  20. 20.
    Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater, 2014, 13: 139–150ADSCrossRefGoogle Scholar
  21. 21.
    Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces. Science, 2013, 339: 1232009CrossRefGoogle Scholar
  22. 22.
    Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc Phys Soc London, 1902, 18: 269CrossRefGoogle Scholar
  23. 23.
    Senior T. Approximate boundary conditions. IEEE Trans Antennas Propag, 1981, 29: 826–829ADSCrossRefGoogle Scholar
  24. 24.
    Luo X, Ishihara T. Surface plasmon resonant interference nanolithography technique. Appl Phys Lett, 2004, 84: 4780–4782ADSCrossRefGoogle Scholar
  25. 25.
    Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308: 534–537ADSCrossRefGoogle Scholar
  26. 26.
    Liu Z, Lee H, Xiong Y, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007, 315: 1686–1686ADSCrossRefGoogle Scholar
  27. 27.
    Liu Z, Wei Q, Zhang X. Surface plasmon interference nanolithography. Nano Lett, 2005, 5: 957–961ADSCrossRefGoogle Scholar
  28. 28.
    Xiang Z. Flying plasmonic lens in the near field for high-speed nanolithography. Nat Nanotechnol, 2008, 3: 733–737ADSCrossRefGoogle Scholar
  29. 29.
    Xu T, Wang C, Du C, et al. Plasmonic beam deflector. Opt Express, 2008, 16: 4753–4759ADSCrossRefGoogle Scholar
  30. 30.
    Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334: 333–337ADSCrossRefGoogle Scholar
  31. 31.
    Luo X, Yan L. Surface plasmon polaritons and its applications. IEEE Photonics J, 2012, 4: 590–595CrossRefGoogle Scholar
  32. 32.
    Sun S, He Q, Xiao S, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater, 2012, 11: 426–431ADSCrossRefGoogle Scholar
  33. 33.
    Pu M, Feng Q, Wang M, et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt Express, 2012, 20: 2246–2254ADSCrossRefGoogle Scholar
  34. 34.
    Li S, Luo J, Anwar S, et al. An equivalent realization of coherent perfect absorption under single beam illumination. Sci Rep, 2014, 4: 7369ADSCrossRefGoogle Scholar
  35. 35.
    Vakil A, Engheta N. Transformation optics using graphene. Science, 2011, 332: 1291–1294ADSCrossRefGoogle Scholar
  36. 36.
    Chen P Y, Alù A. Atomically thin surface cloak using graphene monolayers. ACS Nano, 2011, 5: 5855–5863CrossRefGoogle Scholar
  37. 37.
    Pu M, Chen P, Wang Y, et al. Strong enhancement of light absorption and highly directive thermal emission in graphene. Opt Express, 2013, 21: 11618–11627ADSCrossRefGoogle Scholar
  38. 38.
    Hadad Y, Davoyan A R, Engheta N, et al. Extreme and quantized magneto-optics with graphene meta-atoms and metasurfaces. ACS Photonics, 2014, 1: 1068–1073CrossRefGoogle Scholar
  39. 39.
    Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces. Nat Photonics, 2014, 8: 889–898ADSCrossRefGoogle Scholar
  40. 40.
    Holloway C L, Kuester E F, Gordon J A, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas Propag Mag, 2012, 54: 10–35CrossRefGoogle Scholar
  41. 41.
    Minovich A E, Miroshnichenko A E, Bykov A Y, et al. Functional and nonlinear optical metasurfaces. Laser Photonics Rev, 2015, 9: 195–213CrossRefGoogle Scholar
  42. 42.
    Pendry J B, Martin-Moreno L, Garcia-Vidal F J. Mimicking surface plasmons with structured surfaces. Science, 2004, 305: 847–848ADSCrossRefGoogle Scholar
  43. 43.
    Karlsson A. Approximate boundary conditions for thin structures. IEEE Trans Antennas Propag, 2009, 57: 144–148MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    Pu M, Hu C, Huang C, et al. Investigation of Fano resonance in planar metamaterial with perturbed periodicity. Opt Express, 2013, 21: 992–1001ADSCrossRefGoogle Scholar
  45. 45.
    Maier S A. Plasmonics: Fundamentals and Applications. New York: Springer, 2007Google Scholar
  46. 46.
    Jacob Z, Alekseyev L V, Narimanov E. Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt Express, 2006, 14: 8247–8256ADSCrossRefGoogle Scholar
  47. 47.
    Kildishev A V, Narimanov E E. Impedance-matched hyperlens. Opt Lett, 2007, 32: 3432–3434ADSCrossRefGoogle Scholar
  48. 48.
    Poddubny A, Iorsh I, Belov P, et al. Hyperbolic metamaterials. Nat Photonics, 2013, 7: 948–957ADSCrossRefGoogle Scholar
  49. 49.
    Liang G, Wang C, Zhao Z, et al. Squeezing bulk plasmon polaritons through hyperbolic metamaterial for large area deep subwavelength interference lithography. Adv Opt Mater, doi: 10.1002/adom.201400596Google Scholar
  50. 50.
    Wang C, Gao P, Tao X, et al. Far field observation and theoretical analyses of light directional imaging in metamaterial with stacked metal-dielectric films. Appl Phys Lett, 2013, 103: 031911ADSCrossRefGoogle Scholar
  51. 51.
    Xu T, Agrawal A, Abashin M, et al. All-angle negative refraction and active flat lensing of ultraviolet light. Nature, 2013, 497: 470–474ADSCrossRefGoogle Scholar
  52. 52.
    Maas R, Verhagen E, Parsons J, et al. Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials. ACS Photonics, 2014, 1: 670–676CrossRefGoogle Scholar
  53. 53.
    Ren G, Wang C, Yi G, et al. Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer. Plasmonics, 2013, 8: 1065–1072CrossRefGoogle Scholar
  54. 54.
    Chen X, Grzegorczyk T, Wu B, et al. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E, 2004, 70: 016608ADSCrossRefGoogle Scholar
  55. 55.
    Choi M, Lee S H, Kim Y, et al. A terahertz metamaterial with unnaturally high refractive index. Nature, 2011, 470: 369–373ADSCrossRefGoogle Scholar
  56. 56.
    Luo X, Ishihara T. Subwavelength photolithography based on surface- plasmon polariton resonance. Opt Express, 2004, 12: 3055–3065ADSCrossRefGoogle Scholar
  57. 57.
    Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets. Phys Rev Lett, 2013, 110: 197401ADSCrossRefGoogle Scholar
  58. 58.
    Ni X, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas. Science, 2012, 335: 427–427ADSCrossRefGoogle Scholar
  59. 59.
    Zhang X, Tian Z, Yue W, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Adv Mater, 2013, 25: 4567–4572CrossRefGoogle Scholar
  60. 60.
    Pu M, Zhao Z, Wang Y, et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Sci Rep, 2015, 5: 9822ADSCrossRefGoogle Scholar
  61. 61.
    Gilbert D. On the mathematical theory of suspension bridges, with tables for facilitating their construction. Philos Trans R Soc Lond, 1826, 116: 202–218CrossRefGoogle Scholar
  62. 62.
    Bustamante C, Tinoco I, Maestre M F. Circular differential scattering can be an important part of the circular dichroism of macromolecules. Proc Natl Acad Sci, 1983, 80: 3568–3572ADSCrossRefGoogle Scholar
  63. 63.
    Lin D, Fan P, Hasman E, et al. Dielectric gradient metasurface optical elements. Science, 2014, 345: 298–302ADSCrossRefGoogle Scholar
  64. 64.
    Ma X, Pu M, Li X, et al. A planar chiral meta-surface for optical vortex generation and focusing. Sci Rep, 2015, 5: 10365ADSCrossRefGoogle Scholar
  65. 65.
    Wang Y, Pu M, Hu C, et al. Dynamic manipulation of polarization states using anisotropic meta-surface. Opt Commun, 2014, 319: 14–16ADSCrossRefGoogle Scholar
  66. 66.
    Doumanis E, Goussetis G, Gómez-Tornero J L, et al. Anisotropic impedance surfaces for linear to circular polarization conversion. IEEE Trans Antennas Propag, 2012, 60: 212–219ADSCrossRefGoogle Scholar
  67. 67.
    Yang J, Luo F, Kao T S, et al. Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing. Light Sci Appl, 2014, 3: e185CrossRefGoogle Scholar
  68. 68.
    Pan W, Huang C, Chen P, et al. A low-RCS and high-gain partially reflecting surface antenna. IEEE Trans Antennas Propag, 2014, 62: 945–949ADSCrossRefGoogle Scholar
  69. 69.
    Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans Antennas Propag, 2000, 48: 1230–1234ADSCrossRefGoogle Scholar
  70. 70.
    Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nat Photonics, 2010, 4: 83–91ADSCrossRefGoogle Scholar
  71. 71.
    Wang C, Gao P, Zhao Z, et al. Deep sub-wavelength imaging lithography by a reflective plasmonic slab. Opt Express, 2013, 21: 20683–20691ADSCrossRefGoogle Scholar
  72. 72.
    Gao P, Yao N, Wang C, et al. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Appl Phys Lett, 2015, 106: 093110ADSCrossRefGoogle Scholar
  73. 73.
    Chaturvedi P, Wu W, Logeeswaran V J, et al. A smooth optical superlens. Appl Phys Lett, 2010, 96: 043102ADSCrossRefGoogle Scholar
  74. 74.
    Yan Y, Li L, Feng C, et al. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum. ACS Nano, 2014, 8: 1809–1816CrossRefGoogle Scholar
  75. 75.
    Rittweger E, Han K Y, Irvine S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photonics, 2009, 3: 144–147ADSCrossRefGoogle Scholar
  76. 76.
    Rogers E T F, Lindberg J, Roy T, et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nat Mater, 2012, 11: 432–435ADSCrossRefGoogle Scholar
  77. 77.
    Wang Z, Guo W, Li L, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat Commun, 2011, 2: 218ADSCrossRefGoogle Scholar
  78. 78.
    Garcia-Vidal F J, Martin-Moreno L, Ebbesen T W, et al. Light passing through subwavelength apertures. Rev Mod Phys, 2010, 82: 729–787ADSCrossRefGoogle Scholar
  79. 79.
    Sun S, Yang K Y, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett, 2012, 12: 6223–6229ADSCrossRefGoogle Scholar
  80. 80.
    Pors A, Nielsen M G, Bozhevolnyi S I. Analog computing using reflective plasmonic metasurfaces. Nano Lett, 2015, 15: 791–797ADSCrossRefGoogle Scholar
  81. 81.
    Aieta F, Genevet P, Kats M, et al. Aberrations of flat lenses and aplanatic metasurfaces. Opt Express, 2013, 21: 31530–31539ADSCrossRefGoogle Scholar
  82. 82.
    Pu M, Chen P, Wang C, et al. Broadband anomalous reflection based on low-Q gradient meta-surface. AIP Adv, 2013, 3: 052136ADSCrossRefGoogle Scholar
  83. 83.
    Di Francia G T. Super-gain antennas and optical resolving power. G Suppl Nuovo Cim, 1952, 9: 426–438CrossRefGoogle Scholar
  84. 84.
    Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge: Cambridge University Press, 1999CrossRefGoogle Scholar
  85. 85.
    Canales V F, de Juana D M, Cagigal M P. Superresolution in compensated telescopes. Opt Lett, 2004, 29: 935–937ADSCrossRefGoogle Scholar
  86. 86.
    Land E H. Polarizing refracting bodies. US Patent, 1933, 1918848Google Scholar
  87. 87.
    Ma X, Pan W, Huang C, et al. An active metamaterial for polarization manipulating. Adv Opt Mater, 2014, 2: 945–949CrossRefGoogle Scholar
  88. 88.
    Robbie K, Brett M J, Lakhtakia A. Chiral sculptured thin films. Nature, 1996, 384: 616ADSCrossRefGoogle Scholar
  89. 89.
    Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer. Science, 2009, 325: 1513–1515ADSCrossRefGoogle Scholar
  90. 90.
    Lerosey G, de Rosny J, Tourin A, et al. Focusing beyond the diffraction limit with far-field time reversal. Science, 2007, 315: 1120–1122ADSCrossRefGoogle Scholar
  91. 91.
    Woltersdorff W. Über die optischen Konstanten dünner Metallschichten im langwelligen Ultrarot. Z Für Phys Hadrons Nucl, 1934, 91: 230–252CrossRefGoogle Scholar
  92. 92.
    Knott E F, Shaeffer J F, Tuley M T. Radar Cross Section, 2nd ed. USA: SciTech Publishing, 2004Google Scholar
  93. 93.
    Salisbury W W. Absorbent body for electromagnetic waves. US Patent, 1952: 2599944Google Scholar
  94. 94.
    Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber. Phys Rev Lett, 2008, 100: 207402ADSCrossRefGoogle Scholar
  95. 95.
    Hu C, Zhao Z, Chen X, et al. Realizing near-perfect absorption at visible frequencies. Opt Express, 2009, 17: 11039–11044ADSCrossRefGoogle Scholar
  96. 96.
    Pu M, Wang M, Hu C, et al. Engineering heavily doped silicon for broadband absorber in the terahertz regime. Opt Express, 2012, 20: 25513–25519ADSCrossRefGoogle Scholar
  97. 97.
    Planck M, Masius M. The Theory of Heat Radiation. Philadelphia: P. Blakiston’s Son & Co. 1914Google Scholar
  98. 98.
    Chong Y D, Ge L, Cao H, et al. Coherent perfect absorbers: Time-reversed lasers. Phys Rev Lett, 2010, 105: 053901ADSCrossRefGoogle Scholar
  99. 99.
    Pu M, Feng Q, Hu C, et al. Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film. Plasmonics, 2012, 7: 733–738CrossRefGoogle Scholar
  100. 100.
    Wan W, Chong Y, Ge L, et al. Time-reversed lasing and interferometric control of absorption. Science, 2011, 331: 889–892ADSCrossRefGoogle Scholar
  101. 101.
    Chen P Y, Argyropoulos C, Alù A. Broadening the cloaking bandwidth with non-Foster metasurfaces. Phys Rev Lett, 2013, 111: 233001ADSCrossRefGoogle Scholar
  102. 102.
    Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics. Rev Mod Phys, 2014, 86: 1391ADSCrossRefGoogle Scholar
  103. 103.
    Xiong H, Si L. Review of cavity optomechanics in the weakcoupling regime: From linearization to intrinsic nonlinear interactions. Sci China-Phys Mech Astron, 2015, 58: 050302CrossRefGoogle Scholar
  104. 104.
    Boardman A D, Grimalsky V V, Kivshar Y S, et al. Active and tunable metamaterials. Laser Photonics Rev, 2011, 5: 287–307CrossRefGoogle Scholar
  105. 105.
    Chen H-T, Padilla W J, Zide J M O, et al. Active terahertz metamaterial devices. Nature, 2006, 444: 597–600ADSCrossRefGoogle Scholar
  106. 106.
    Wu X, Hu C, Wang Y, et al. Active microwave absorber with the dual-ability of dividable modulation in absorbing intensity and frequency. AIP Adv, 2013, 3: 022114ADSCrossRefGoogle Scholar
  107. 107.
    Lee J, Jung S, Chen P-Y, et al. Ultrafast electrically tunable polaritonic metasurfaces. Adv Opt Mater, 2014, 2: 1057–1063CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and ElectronicsChinese Academy of ScienceChengduChina

Personalised recommendations