Advertisement

An accurate determination of the Hubble constant from baryon acoustic oscillation datasets

  • Cheng Cheng
  • QingGuo Huang
Article

Abstract

Even though the Hubble constant cannot be significantly determined just by the low-redshift Baryon Acoustic Oscillation (BAO) data, it can be tightly constrained once the high-redshift BAO data are combined. We combined BAO data from 6dFGS, BOSS DR11 clustering of galaxies, WiggleZ and z = 2.34 from BOSS DR11 quasar Lyman-α forest lines to get H 0 = 68.17 -1.56 +1.55 km s-1 Mpc-1. In addition, we adopted the simultaneous measurements of H(z) and D A (z) from the two-dimensional two-point correlation function from BOSS DR9 CMASS sample and two-dimensional matter power spectrum from SDSS DR7 sample to obtain H 0 = (68.11 ± 1.69) km s-1 Mpc-1. Finally, combining all of the BAO datasets, we conclude that H 0 = (68.11 ± 0.86) km s-1 Mpc-1, a 1.3% determination.

Keywords

Hubble constant baryon acoustic oscillation large-scale structure 

References

  1. 1.
    Hubble E. A relation between distance and radial velocity among extragalactic nebulae. Proc Natl Acad Sci USA, 1929, 15: 168–173zbMATHCrossRefADSGoogle Scholar
  2. 2.
    Freedman W L, Madore B F, Gibson B K, et al. Final results from the Hubble space telescope key project to measure the Hubble constant. Astrophys J, 2001, 553: 47–72CrossRefADSGoogle Scholar
  3. 3.
    Riess A G, Macri L, Casertano S, et al. A 3% solution: Determination of the Hubble constant with the Hubble space telescope and wide field camera 3. Astrophys J, 2011, 730: 119CrossRefADSGoogle Scholar
  4. 4.
    Hinshaw G F. Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmology results. Astrophys J Suppl S, 2013, 208: 19CrossRefADSGoogle Scholar
  5. 5.
    Planck C, Aghanim N, Armitage-Caplan C, et al. Planck 2013 results. XVI. cosmological parameters. Astron Astrophys, 2014, 571: A16CrossRefADSGoogle Scholar
  6. 6.
    Efstathiou G. H 0 revisited. Mon Not R Astron Soc, 2014, 440: 1138–1152CrossRefADSGoogle Scholar
  7. 7.
    Beutler F, Blake C, Colless M, et al. The 6dF galaxy survey: Baryon acoustic oscillations and the local Hubble constant. Mon Not R Astron Soc, 2011, 416: 3017–3032CrossRefADSGoogle Scholar
  8. 8.
    Anderson L, Aubourg É, Bailey S, et al. The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data releases 10 and 11 galaxy samples. Mon Not R Astron Soc, 2014, 441: 24–62CrossRefADSGoogle Scholar
  9. 9.
    Delubac T, Bautista J E, Busca N G, et al. Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars. arXiv: 1404.1801Google Scholar
  10. 10.
    Bennett C L, Larson D, Weiland J L, et al. The 1%concordance Hubble constant. Astrophys J, 2014, 794: 135CrossRefADSGoogle Scholar
  11. 11.
    Eisenstein D J, Zehavi I, Hogg D W, et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys J, 2005, 633: 560–574CrossRefADSGoogle Scholar
  12. 12.
    Chuang C H, Wang Y. Measurements of H(z) and DA(z) from the twodimensional two-point correlation function of Sloan digital sky survey luminous red galaxies. Mon Not R Astron Soc, 2012, 426: 226–236CrossRefADSGoogle Scholar
  13. 13.
    Chuang C H, Wang Y. Using multipoles of the correlation function to measure H(z), DA(z) and β(z) from Sloan digital sky survey luminous red galaxies. Mon Not R Astron Soc, 2013, 431: 2634–2644CrossRefADSGoogle Scholar
  14. 14.
    Chuang C H, Wang Y. Modeling the anisotropic two-point galaxy correlation function on small scales and improved measurements of H(z), DA(z), and β(z) from the Sloan digital sky survey DR7 luminous red galaxies. Mon Not R Astron Soc, 2013, 435: 255–262CrossRefADSGoogle Scholar
  15. 15.
    Chuang C H, Prada F, Cuesta A J, et al. The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: Single-probe measurements and the strong power of normalized growth rate on constraining dark energy. arXiv: 1312.4889 [astro-ph.CO]Google Scholar
  16. 16.
    Hemantha M D P, Wang Y, Chuang C H. Measurement of H(z) and DA(z) from the two-dimensional power spectrum of Sloan digital sky survey luminous red galaxies. Mon Not R Astron Soc, 2014, 445: 3737–3744CrossRefADSGoogle Scholar
  17. 17.
    Chevallier M, Polarski D. Accelerating universes with scaling dark matter. Int J Mod Phys D, 2001, 10: 213; Linder E V. Exploring the expansion history of the universe. Phys Rev Lett, 2003, 90: 091301CrossRefADSGoogle Scholar
  18. 18.
    Eisenstein D J, Hu W. Baryonic features in the matter transfer function. Astrophys J, 1998, 496: 605–614CrossRefADSGoogle Scholar
  19. 19.
    Kazin E A, Koda J, Blake C, et al. Improved WiggleZ dark energy survey distance measurements to z=1 with reconstruction of the baryonic acoustic feature. arXiv: 1401.0358Google Scholar
  20. 20.
    Suzuki N, Rubin D, Lidman C, et al. The Hubble space telescope cluster supernova survey: V. improving the dark energy constraints above z > 1 and building an early-type-hosted supernova sample. Astrophys J, 2012, 746: 85CrossRefADSGoogle Scholar
  21. 21.
    Wu J, Li Z X, Wu P X, et al. Constrains on f(T) gravity with the strong gravitational lensing data. Sci China-Phys Mech Astron, 2014, 57: 988–993CrossRefADSGoogle Scholar
  22. 22.
    Zhang M, Sun C Y, Yang Z Y, et al. Cosmological evolution of quintessence with a sign-changing interaction in dark sector. Sci China-Phys Mech Astron, 2014, 57: 1805–1808CrossRefADSGoogle Scholar
  23. 23.
    Hu Y Z, Li M, Li X D, et al. Investigating the possibility of a turning point in the dark energy equation of state. Sci China-Phys Mech Astron, 2014, 57: 1607–1612CrossRefADSGoogle Scholar
  24. 24.
    Li Z X, Wu P X, Yu H W, et al. A possible resolution of tension between Planck and Type Ia supernova observations. Sci China-Phys Mech Astron, 2014, 57: 381–386CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations