Optomechanically-induced-transparency cooling of massive mechanical resonators to the quantum ground state

Article Special Topic: Optomechanics

Abstract

Ground state cooling of massive mechanical objects remains a difficult task restricted by the unresolved mechanical sidebands. We propose an optomechanically-induced-transparency cooling scheme to achieve ground state cooling of mechanical motion without the resolved sideband condition in a pure optomechanical system with two mechanical modes coupled to the same optical cavity mode. We show that ground state cooling is achievable for sideband resolution ωm/κ as low as ∼ 0.003. This provides a new route for quantum manipulation of massive macroscopic devices and high-precision measurements.

Keywords

ground state cooling resolved sideband limit optomechanics 
050305 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kippenberg T J, Vahala K J. Cavity optomechanics: Back-action at the mesoscale. Science, 2008, 321: 1172–1176CrossRefADSGoogle Scholar
  2. 2.
    Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics. arXiv:1303.0733Google Scholar
  3. 3.
    Meystre P. A short walk through quantum optomechanics. Ann Phys, 2013, 525: 215–233CrossRefMATHGoogle Scholar
  4. 4.
    Teufel J D, Donner T, Li D, et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature, 2011, 475: 359–363CrossRefADSGoogle Scholar
  5. 5.
    Chan J, Mayer A T P, Safavi-Naeini A H, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 2011, 478: 89–92CrossRefADSGoogle Scholar
  6. 6.
    Gigan S, Böhm H R, Paternostro M, et al. Self-cooling of a micromirror by radiation pressure. Nature, 2006, 444: 67–70CrossRefADSGoogle Scholar
  7. 7.
    Arcizet O, Cohadon P F, Briant T, et al. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature, 2006, 444: 71–74CrossRefADSGoogle Scholar
  8. 8.
    Schliesser A, Del’Haye P, Nooshi N, et al. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys Rev Lett, 2006, 97: 243905CrossRefADSGoogle Scholar
  9. 9.
    Schliesser A, Rivière R, Anetsberger G, et al. Resolved-sideband cooling of a micromechanical oscillator. Nat Phys, 2008, 4: 415–419CrossRefGoogle Scholar
  10. 10.
    Gröblacher S, Hertzberg J B, Vanner M R, et al. Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nat Phys, 2009, 5: 485–488CrossRefGoogle Scholar
  11. 11.
    Park Y S, Wang H. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nat Phys, 2009, 5: 489–493CrossRefGoogle Scholar
  12. 12.
    Schliesser A, Arcizet O, Rivère R, et al. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nat Phys, 2009, 5: 509–514CrossRefGoogle Scholar
  13. 13.
    Rocheleau T, Ndukum T, Macklin C, et al. Preparation and detection of a mechanical resonator near the ground state of motion. Nature, 2010, 463: 72–75CrossRefADSGoogle Scholar
  14. 14.
    Wilson-Rae I, Nooshi N, Zwerger W, et al. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys Rev Lett, 2007, 99: 093901CrossRefADSGoogle Scholar
  15. 15.
    Marquardt F, Chen J P, Clerk A A, et al. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys Rev Lett, 2007, 99: 093902CrossRefADSGoogle Scholar
  16. 16.
    Liu Y C, Hu Y W, Wong C W, et al. Review of cavity optomechanical cooling. Chin Phys B, 2013, 22: 114213CrossRefADSGoogle Scholar
  17. 17.
    Elste F, Girvin S M, Clerk A A. Quantum noise interference and backaction cooling in cavity nanomechanics. Phys Rev Lett, 2009, 102: 207209CrossRefADSGoogle Scholar
  18. 18.
    Xuereb A, Schnabel R, Hammerer K. Dissipative optomechanics in a Michelson-Sagnac interferometer. Phys Rev Lett, 2011, 107: 213604CrossRefADSGoogle Scholar
  19. 19.
    Tian L. Ground state cooling of a nanomechanical resonator via parametric linear coupling. Phys Rev B, 2009, 79: 193407CrossRefADSGoogle Scholar
  20. 20.
    Li Y, Wu L A, Wang Z D. Fast ground-state cooling of mechanical resonators with time-dependent optical cavities. Phys Rev A, 2011, 83: 043804CrossRefADSGoogle Scholar
  21. 21.
    Liao J Q, Law C K. Cooling of a mirror in cavity optomechanics with a chirped pulse. Phys Rev A, 2011, 84: 053838CrossRefADSGoogle Scholar
  22. 22.
    Wang X, Vinjanampathy S, Strauch FW, et al. Ultraefficient cooling of resonators: Beating sideband cooling with quantum control. Phys Rev Lett, 2011, 107: 177204CrossRefADSGoogle Scholar
  23. 23.
    Machnes S, Cerrillo J, Aspelmeyer M, et al. Pulsed laser cooling for cavity optomechanical resonators. Phys Rev Lett, 2012, 108: 153601CrossRefADSGoogle Scholar
  24. 24.
    Genes C, Ritsch H, Vitali D. Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption. Phys Rev A, 2009, 80: 061803(R)CrossRefADSGoogle Scholar
  25. 25.
    Vogell B, Stannigel K, Zoller P, et al. Cavity-enhanced long-distance coupling of an atomic ensemble to a micromechanical membrane. Phys Rev A, 2013, 87: 023816CrossRefADSGoogle Scholar
  26. 26.
    Restrepo J, Ciuti C, Favero I. Single-polariton optomechanics. Phys Rev Lett, 2014, 112: 013601CrossRefADSGoogle Scholar
  27. 27.
    Gu WJ, Li G X. Quantum interference effects on ground-state optomechanical cooling. Phys Rev A, 2013, 87: 025804CrossRefADSGoogle Scholar
  28. 28.
    Liu Y C, Xiao Y F, Luan X, et al. Ground state cooling of mechanical motion through coupled cavity interactions in the unresolved sideband regime. CLEO, 2013 (Optical Society of America). p.QM2B.2Google Scholar
  29. 29.
    Liu Y C, Xiao Y F, Luan X, et al. Coupled cavities for motional ground state cooling and strong optomechanical coupling. Phys Rev X, under reviewGoogle Scholar
  30. 30.
    Weis S, Rivière R, Deléglise S, et al. Optomechanically induced transparency. Science, 2010, 330: 1520–1523CrossRefADSGoogle Scholar
  31. 31.
    Safavi-Naeini A H, Alegre T PM, Chan J, et al. Electromagnetically induced transparency and slow light with optomechanics. Nature, 2011, 472: 69–73CrossRefADSGoogle Scholar
  32. 32.
    Agarwal G S, Huang S. Electromagnetically induced transparency in mechanical effects of light. Phys Rev A, 2010, 81: 041803(R)CrossRefADSGoogle Scholar
  33. 33.
    Qu K, Agarwal G S. Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems. Phys Rev A, 2013, 87: 031802 (R)CrossRefADSGoogle Scholar
  34. 34.
    Liu Y C, Xiao Y F, Luan X, et al. Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics. Phys Rev Lett, 2013, 110: 153606CrossRefADSGoogle Scholar
  35. 35.
    Liu Y C, Shen Y F, Gong Q, et al. Optimal limits of cavity optomechanical cooling in the strong coupling regime. Phys Rev A, 2014, 89: 053821CrossRefADSGoogle Scholar
  36. 36.
    Kippenberg T J, Rokhsari H, Carmon T, et al. Analysis of radiationpressure induced mechanical oscillation of an optical microcavity. Phys Rev Lett, 2005, 95: 033901CrossRefADSGoogle Scholar
  37. 37.
    Tomes M, Carmon T. Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. Phys Rev Lett, 2009, 102: 113601CrossRefADSGoogle Scholar
  38. 38.
    Eichenfield M, Chan J, Camacho R M, et al. Optomechanical crystals. Nature, 2009, 462: 78–82CrossRefADSGoogle Scholar
  39. 39.
    Zheng J, Li Y, Aras M S, et al. Parametric optomechanical oscillations in two-dimensional slot-type high-Q photonic crystal cavities. App Phys Lett, 2012, 100: 211908CrossRefADSGoogle Scholar
  40. 40.
    Thompson J D, Zwickl B M, Jayich A M, et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 2008, 452: 72CrossRefADSGoogle Scholar
  41. 41.
    Bui C H, Zheng J, Hoch S W, et al. High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling. App Phys Lett, 2012, 100: 021110CrossRefADSGoogle Scholar
  42. 42.
    Anetsberger G, Arcizet O, Unterreithmeier Q P, et al. Near-field cavity optomechanics with nanomechanical oscillators. Nat Phys, 2009, 5: 909–914CrossRefGoogle Scholar
  43. 43.
    Zheng J, Sun X, Li Y, et al. Femtogram dispersive L3-nanobeam optomechanical cavities: Design and experimental comparison. Opt Express, 2012, 20: 26484–26498ADSGoogle Scholar
  44. 44.
    Li M, Pernice W H P, Xiong C, et al. Harnessing optical forces in integrated photonic circuits. Nature, 2008, 456: 480CrossRefADSGoogle Scholar
  45. 45.
    Abbott B, Abbott R, Adhikari R, et al. Observation of a kilogram-scale oscillator near its quantum ground state. New J Phys, 2009, 11: 073032CrossRefGoogle Scholar
  46. 46.
    Abbott B, Abbott R, Adhikari R, et al. LIGO: The laser interferometer gravitational-wave observatory. Rep Prog Phys, 2009, 72: 076901CrossRefADSGoogle Scholar
  47. 47.
    Hill J T, Safavi-Naeini A H, Chan J, et al. Coherent optical wavelength conversion via cavity-optomechanics. Nat Commun, 2012, 3: 1196CrossRefADSGoogle Scholar
  48. 48.
    Dong C, Fiore V, Kuzyk M C, et al. Optomechanical dark mode. Science, 2012, 338: 1609–1613CrossRefADSGoogle Scholar
  49. 49.
    Liu Y, Davanco M, Aksyuk V, et al. Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators. Phys Rev Lett, 2013, 110: 223603CrossRefADSGoogle Scholar
  50. 50.
    Bagci T, Simonsen A, Schmid S, et al. Optical detection of radio waves through a nanomechanical transducer. Nature, 2014, 507: 81–85CrossRefADSGoogle Scholar
  51. 51.
    Lin Q, Rosenberg J, Chang D, et al. Coherent mixing of mechanical excitations in nano-optomechanical structures. Nat Photon, 2010, 4: 236–242CrossRefADSGoogle Scholar
  52. 52.
    Massel F, Cho S U, Pirkkalainen J M, et al. Multimode circuit optomechanics near the quantum limit. Nat Commun, 2012, 3: 987CrossRefADSGoogle Scholar
  53. 53.
    Seok H, Buchmann L F, Singh S, et al. Optically mediated nonlinear quantum optomechanics. Phys Rev A, 2012, 86: 063829CrossRefADSGoogle Scholar
  54. 54.
    Seok H, Buchmann L F, Wright E M, et al. Multimode strong-coupling quantum optomechanics. Phys Rev A, 2013, 88: 063809CrossRefADSGoogle Scholar
  55. 55.
    Tan H, Li G, Meystre P. Dissipation-driven two-mode mechanical squeezed states in optomechanical systems. Phys Rev A, 2013, 87: 033829CrossRefADSGoogle Scholar
  56. 56.
    Ojanen T, Børkje K. Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency. Phys Rev A, 2014, 90: 013824CrossRefADSGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory for Mesoscopic Physics and School of PhysicsPeking University; Collaborative Innovation Center of Quantum MatterBeijingChina
  2. 2.Optical Nanostructures LaboratoryColumbia UniversityNew YorkUSA

Personalised recommendations