Advertisement

Pairing superfluidity in spin-orbit coupled ultracold Fermi gases

  • Wei YiEmail author
  • Wei ZhangEmail author
  • XiaoLing CuiEmail author
Invited Review Optics

Abstract

We review some recent progresses on the study of ultracold Fermi gases with synthetic spin-orbit coupling. In particular, we focus on the pairing superfluidity in these systems at zero temperature. Recent studies have shown that different forms of spin-orbit coupling in various spatial dimensions can lead to a wealth of novel pairing superfluidity. A common theme of these variations is the emergence of new pairing mechanisms which are direct results of spin-orbit-coupling-modified single-particle dispersion spectra. As different configurations can give rise to single-particle dispersion spectra with drastic differences in symmetry, spin dependence and low-energy density of states, spin-orbit coupling is potentially a powerful tool of quantum control, which, when combined with other available control schemes in ultracold atomic gases, will enable us to engineer novel states of matter.

Keywords

spin-orbit coupling ultracold Fermi gas superconductivity topological superfluid 
014201 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lin Y J, Compton R L, Perry A R, et al. Bose-Einstein condenstate in a uniform light-induced vector potential. Phys Rev Lett, 2009, 102: 130401ADSCrossRefGoogle Scholar
  2. 2.
    Lin Y J, Compton R L, Jiménez-García K, et al. Synthetic magnetic fields for ultracold neutral atoms. Nature, 2009, 462: 628–632ADSCrossRefGoogle Scholar
  3. 3.
    Lin Y J, Compton R L, Jiménez-García K, et al. A synthetic electric force acting on neutral atoms. Nat Phys, 2011, 7: 531–534CrossRefGoogle Scholar
  4. 4.
    Lin Y J, Jiménez-García K, Spielman I B. Spin-orbit-coupled Bose-Einstein condensates. Nature, 2011, 471: 83–86ADSCrossRefGoogle Scholar
  5. 5.
    Wang P, Yu Z Q, Fu Z, et al. Spin-orbit coupled degenerate Fermi gases. Phys Rev Lett, 2012, 109: 095301ADSCrossRefGoogle Scholar
  6. 6.
    Cheuk L W, Sommer A T, Hadzibabic Z, et al. Spin-injection spectroscopy of a spin-orbit coupled Fermi gas. Phys Rev Lett, 2012, 109: 095302ADSCrossRefGoogle Scholar
  7. 7.
    Zhang J Y, Ji S C, Chen Z, et al. Collective dipole oscillations of a spinorbit coupled Bose-Einstein condensate. Phys Rev Lett, 2012, 109: 115301ADSCrossRefGoogle Scholar
  8. 8.
    Qu C, Hamner C, Gong M, et al. Observation of Zitterbewegung in a spin-orbit-coupled Bose-Einstein condensate. Phys Rev A, 2013, 88: 021604ADSCrossRefGoogle Scholar
  9. 9.
    Williams R A, Beeler M C, LeBlanc L J, et al. Raman-induced interactions in a single-component Fermi gas near an s-wave Feshbach resonance. Phys Rev Lett, 2013, 111: 095301ADSCrossRefGoogle Scholar
  10. 10.
    Fu Z, Huang L, Meng Z, et al. Production of Feshbach molecules induced by spin-orbit coupling in Fermi gases. Nat Phys, 2014, 10: 110–115CrossRefGoogle Scholar
  11. 11.
    Ji S C, Zhang J Y, Zhang L, et al. Experimental determination of the finite-temperature phase diagram of a spin-orbit coupled Bose gas. Nat Phys, 2014, 10: 314–320CrossRefGoogle Scholar
  12. 12.
    Olson A J, Wang S J, Niffenegger R J, et al. Tunable Landau-Zener transitions in a spin-orbit-coupled Bose-Einstein condensate. Phys Rev A, 2014, 90: 013616ADSCrossRefGoogle Scholar
  13. 13.
    Hasan M Z, Kane C L. Topological insulators. Rev Mod Phys, 2010, 82: 3045–3067ADSCrossRefGoogle Scholar
  14. 14.
    Qi X L, Zhang S C. Topological insulators and superconductors. Rev Mod Phys, 2011, 83: 1057ADSCrossRefGoogle Scholar
  15. 15.
    Alicea J. New directions in the pursuit of Majorana fermions in solid state systems. Rep Prog Phys, 2012, 75: 076501ADSCrossRefGoogle Scholar
  16. 16.
    Campbell D L, Juzeliunas G, Spielman I B. Realistic Rashba and Dresselhaus spin-orbit coupling for neutral atoms. Phys Rev A, 2011, 84: 025602ADSCrossRefGoogle Scholar
  17. 17.
    Sau J D, Sensarma R, Powell S, et al. Chiral Rashba spin textures in ultracold Fermi gases. Phys Rev B, 2011, 83: 140510ADSCrossRefGoogle Scholar
  18. 18.
    Xu Z F, You L. Dynamical generation of arbitrary spin-orbit couplings for neutral atoms. Phys Rev A, 2012, 85: 043605ADSCrossRefGoogle Scholar
  19. 19.
    Liu X J, Law K T, Ng T K. Realizations of 2D spin-orbit interaction and exotic topological orders in cold atoms. Phys Rev Lett, 2014, 112: 086401ADSCrossRefGoogle Scholar
  20. 20.
    Anderson B M, Spielman I B, Juzeliunas G. Magnetically generated spin-orbit coupling for ultracold atoms. Phys Rev Lett, 2013, 111: 125301ADSCrossRefGoogle Scholar
  21. 21.
    Xu Z F, You L, Ueda M. Atomic spin-orbit coupling synthesized with magnetic-field-gradient pulses. Phys Rev A, 2013, 87: 063634ADSCrossRefGoogle Scholar
  22. 22.
    Li Y, Zhou X, Wu C. Two- and three-dimensional topological insulators with isotropic and parity-breaking Landau levels. Phys Rev A, 2012, 85: 125122ADSGoogle Scholar
  23. 23.
    Anderson B M, Juzeliunas G, Galitski V M, et al. Synthetic 3D spinorbit coupling. Phys Rev Lett, 2012, 108: 235301ADSCrossRefGoogle Scholar
  24. 24.
    Zhang C, Tewari S, Lutchyn R M, et al. p x+ip y superfluid from s-wave interactions of fermionic cold atoms. Phys Rev Lett, 2008, 101: 160401ADSCrossRefGoogle Scholar
  25. 25.
    Sato M, Takahashi Y, Fujimoto S. Non-Abelian topological order in s-wave superfluids of ultracold fermionic atoms. Phys Rev Lett, 2009, 103: 020401ADSCrossRefGoogle Scholar
  26. 26.
    Gong M, Tewari S, Zhang C. BCS-BEC crossover and topological phase transition in 3D spin-orbit coupled degenerate Fermi gases. Phys Rev Lett, 2011, 107: 195303ADSCrossRefGoogle Scholar
  27. 27.
    Dell’Anna L, Mazzarella G, Salasnich L. Condensate fraction of a resonant Fermi gas with spin-orbit coupling in three and two dimensions. Phys Rev A, 2011, 84: 033633ADSCrossRefGoogle Scholar
  28. 28.
    Zhou J, Zhang W, Yi W. Topological superfluid in a trapped twodimensional polarized Fermi gas with spin-orbit coupling. Phys Rev A, 2011, 84: 063603ADSCrossRefGoogle Scholar
  29. 29.
    Gong M, Chen G, Jia S, et al. Searching for Majorana fermions in 2D spin-orbit coupled Fermi superfluids at finite temperature. Phys Rev Lett, 2012, 109: 105302ADSCrossRefGoogle Scholar
  30. 30.
    Liao R, Yi-Xiang Y, Liu W M. Tuning the tricritical point with spin-orbit coupling in polarized fermionic condensates. Phys Rev Lett, 2012, 108: 080406ADSCrossRefGoogle Scholar
  31. 31.
    He L, Huang X G. BCS-BEC crossover in 2D fermi gases with Rashba spin-orbit coupling. Phys Rev Lett, 2012, 108: 145302ADSCrossRefGoogle Scholar
  32. 32.
    Chen C. Inhomogeneous topological superfluidity in one-dimensional spin-orbit-coupled Fermi gases. Phys Rev Lett, 2013, 111: 235302ADSCrossRefGoogle Scholar
  33. 33.
    Qu C, Zheng Z, Gong M, et al. Topological superfluid with finite momentum pairing and Majorana fermions. Nat Comm, 2013, 4: 2710ADSGoogle Scholar
  34. 34.
    Zhang W, Yi W. Topological Fulde-Ferrell-Larkin-Ovchinnikov states in spin-orbit-coupled Fermi gases. Nat Commun, 2013, 4: 2711–2716ADSGoogle Scholar
  35. 35.
    Liu X J, Hu H. Topological Fulde-Ferrell superfluid in spin-orbitcoupled atomic Fermi gases. Phys Rev A, 2013, 88: 023622ADSCrossRefGoogle Scholar
  36. 36.
    Xu Y, Chu R L, Zhang C. Anisotropic Weyl fermions from the quasiparticle excitation spectrum of a 3D Fulde-Ferrell superfluid. Phys Rev Lett, 2014, 112: 136402ADSCrossRefGoogle Scholar
  37. 37.
    Cao Y, Zou S H, Liu X J, et al. Gaples topological Fulde-Ferrell super-fluidity in spin-orbit coupled Fermi gases. arXiv:1402.6832Google Scholar
  38. 38.
    Hu H, Dong L, Cao Y, et al. Gapless topological Fulde-Ferrell super-fluidity induced by in-plane Zeeman field. arXiv:1404.2442Google Scholar
  39. 39.
    Iskin M, Subasi A L. Stability of spin-orbit couple Fermi gases with population imbalance. Phys Rev Lett, 2011, 107: 050402ADSCrossRefGoogle Scholar
  40. 40.
    Yi W, Guo G C. Phase separation in a polarized Fermi gas with spinorbit coupling. Phys Rev A, 2011, 84: 031608ADSCrossRefGoogle Scholar
  41. 41.
    Han L, Sá de Melo C A R. Evolution from BCS to BEC superfluidity in the presence of spin-orbit coupling. Phys Rev A, 2012, 85: 011606ADSCrossRefGoogle Scholar
  42. 42.
    Yi W, Zhang W. Molecule and polaron in a highly polarized twodimensional Fermi gas with spin-orbit coupling. Phys Rev Lett, 2012, 109: 140402ADSCrossRefGoogle Scholar
  43. 43.
    Yang X, Wan S. Phase diagram of a uniform two-dimensional Fermi gas with spin-orbit coupling. Phys Rev A, 2012, 85: 023633ADSCrossRefGoogle Scholar
  44. 44.
    Iskin M, Subasi A L. Topological superfluid phases of an atomic Fermi gas with in- and out-of-plane Zeeman fields and equal Rashba-Dresselhaus spin-orbit coupling. Phys Rev A, 2013, 87: 063627ADSCrossRefGoogle Scholar
  45. 45.
    Dong L, Jiang L, Pu H. Fulde-Ferrell pairing instability in spin-orbit coupled Fermi gas. New J Phys, 2013, 15: 075014CrossRefGoogle Scholar
  46. 46.
    Zhou X F, Guo G C, Zhang W, et al. Exotic pairing states in a Fermi gas with three-dimensional spin-orbit coupling. Phys Rev A, 2013, 87: 063606ADSCrossRefGoogle Scholar
  47. 47.
    Wu F, Guo G C, Zhang W, et al. Unconventional superfluid in a twodimensional Fermi gas with anisotropic spin-orbit coupling and Zeeman fields. Phys Rev Lett, 2013, 110: 110401ADSCrossRefGoogle Scholar
  48. 48.
    Wu F, Guo G C, Zhang W, et al. Unconventional Fulde-Ferrell-Larkin-Ovchinnikov pairing states in a Fermi gas with spin-orbit coupling. Phys Rev A, 2013, 88: 043614ADSCrossRefGoogle Scholar
  49. 49.
    Zhou L, Cui X, Yi W. Three-component ultracold Fermi gases with spin-orbit coupling. Phys Rev Lett, 2014, 112: 195301ADSCrossRefGoogle Scholar
  50. 50.
    Shi Z Y, Cui X, Zhai H. Universal trimers induced by spin-orbit coupling in ultracold Fermi gases. Phys Rev Lett, 2014, 112: 013201ADSCrossRefGoogle Scholar
  51. 51.
    Cui X, Yi W. Universal Borromean Binding in spin-orbit coupled ultracold Fermi gases. Phys Rev X, 2014, 4: 031026Google Scholar
  52. 52.
    Wang C, Gao C, Jian C, et al. Spin-orbit coupled spinor Bose-Einstein condensates. Phys Rev Lett, 2010, 105: 160403ADSCrossRefGoogle Scholar
  53. 53.
    Wu C, Mondragon-Shem I, Zhou X F. Unconventional Bose-Einstein condensations from spin-orbit coupling. Chin Phys Lett, 2011, 28: 097102ADSCrossRefGoogle Scholar
  54. 54.
    Vyasanakere J P, Zhang S, Shenoy V B. BCS-BEC crossover induced by a synthetic non-Abelian gauge field. Phys Rev B, 2011, 84: 014512ADSCrossRefGoogle Scholar
  55. 55.
    Yu Z Q, Zhai H. Spin-orbit coupled Fermi gases across a Feshbach resonance. Phys Rev Lett, 2011, 107: 195305ADSCrossRefGoogle Scholar
  56. 56.
    Dalibard J, Gerbier F, Juzeliunas G, et al. Artificial gauge potentials for neutral atoms. Rev Mod Phys, 2011, 83: 1523ADSCrossRefGoogle Scholar
  57. 57.
    Liu X J, Borunda M F, Liu X, et al. Effect of induced spin-orbit coupling for atoms via laser fields. Phys Rev Lett, 2009, 102: 046402ADSCrossRefGoogle Scholar
  58. 58.
    Spielman I B. Raman processes and effective gauge potentials. Phys Rev A, 2009, 79: 063613ADSCrossRefGoogle Scholar
  59. 59.
    Li Y, Zhou X F, Wu C. 3D quaternionic condensation and spin textures with Hopf invariants from synthetic spin-orbit coupling. arXiv:1205.2162Google Scholar
  60. 60.
    Goldman N, Gerbier F, Lewenstein M. Realizing non-Abelian gauge potentials in optical square lattices: an application to atomic Chern insulators. J Phys B, 2013, 46: 134010ADSCrossRefGoogle Scholar
  61. 61.
    Goldman N, Juzeliunas G, Öhberg P, et al. Light-induced gauge fields for ultracold atoms. arXiv:1308.6533Google Scholar
  62. 62.
    Chen J, Hu H, Gao X. Three-component topological superfluid in onedimensional Fermi gases with spin-orbit coupling. arXiv:1405.0709Google Scholar
  63. 63.
    Ketterle W, Zwierlein M W. Making, probing and udnerstanding ultracold Fermi gases. Ultracold Fermi Gases. In: Proceedings of the International School of Physics “Enrico Fermi”, Course CLXIV, Amsterdam: IOS Press, 2008Google Scholar
  64. 64.
    Chin C, Grimm R, Julienne P, et al. Feshbach resonances in ultracold gases. Rev Mod Phys, 2010, 82: 1225–1286ADSCrossRefGoogle Scholar
  65. 65.
    Fuld P, Ferrell R A. Superconductivity in a strong spin-exchange field. Phys Rev, 1964, 135: A550–A563; Larkin A I, Ovchinnikov Y N. Inhomogeneous state of superconductors. Sov Phys JETP, 1965, 20: 762–765ADSCrossRefGoogle Scholar
  66. 66.
    Nayak C, Simon S H, Stern A, et al. Non-Abelian anyons and topological quantum computation. Rev Mod Phys, 2008, 80: 1083ADSCrossRefzbMATHMathSciNetGoogle Scholar
  67. 67.
    Michaeli K, Potter A C, Lee P A. Superconducting and ferromagnetic phases in SrTiO3/LaAlO3 oxide interface structure: Possibility of finite momentum pairing. Phys Rev Lett, 2012, 108: 117003ADSCrossRefGoogle Scholar
  68. 68.
    Zheng Z, Gong M, Zou X, et al. Route to observable Fulde-Ferrell-Larkin-Ovchinnikov phases in three-dimensional spin-orbit-coupled degenerate Fermi gases. Phys Rev A, 2013, 87: 031602ADSCrossRefGoogle Scholar
  69. 69.
    Efimov V. Weakly-bound states of three resonantly interacting particles. Yad Fiz, 1970, 12: 1080Google Scholar
  70. 70.
    Zhukov MV, Danilin B V, Fedorov D V, et al. Bound state properties of Borromean halo nuclei: 6He and 11Li. Phys Rep, 1993, 231: 151–199ADSCrossRefGoogle Scholar
  71. 71.
    Braaten E, Hammer H W. Universality in few-body systems with large scattering length. Phys Rep, 2006, 428: 259–392ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Key Laboratory of Quantum Information, University of Science and Technology of ChinaChinese Academy of SciencesHefeiChina
  2. 2.Synergetic Innovation Center of Quantum Information and Quantum PhysicsUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Department of PhysicsRenmin University of ChinaBeijingChina
  4. 4.Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano DevicesBeijingChina
  5. 5.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations