Advertisement

Science China Physics, Mechanics & Astronomy

, Volume 57, Issue 11, pp 2024–2030 | Cite as

First dark matter search results from the PandaX-I experiment

  • MengJiao Xiao
  • Xiang Xiao
  • Li Zhao
  • XiGuang Cao
  • Xun Chen
  • YunHua Chen
  • XiangYi Cui
  • DeQing Fang
  • ChangBo Fu
  • Karl L. Giboni
  • HaoWei Gong
  • GuoDong Guo
  • Jie Hu
  • XingTao Huang
  • XiangDong Ji
  • YongLin Ju
  • SiAo Lei
  • ShaoLi Li
  • Qing Lin
  • HuaXuan Liu
  • JiangLai Liu
  • Xiang Liu
  • Wolfgang Lorenzon
  • YuGang Ma
  • YaJun Mao
  • KaiXuan Ni
  • Kirill Pushkin
  • XiangXiang Ren
  • Michael Schubnell
  • ManBing Shen
  • Scott Stephenson
  • AnDi Tan
  • Greg Tarlé
  • HongWei Wang
  • JiMin Wang
  • Meng Wang
  • XuMing Wang
  • Zhou Wang
  • YueHuan Wei
  • ShiYong Wu
  • PengWei Xie
  • YingHui You
  • XiongHui Zeng
  • Hua Zhang
  • Tao Zhang
  • ZhongHua Zhu
  • The PandaX Collaboration
Letter Progress of Projects Supported by NSFC

Abstract

We report on the first dark-matter (DM) search results from PandaX-I, a low threshold dual-phase xenon experiment operating at the China JinPing Underground Laboratory. In the 37-kg liquid xenon target with 17.4 live-days of exposure, no DM particle candidate event was found. This result sets a stringent limit for low-mass DM particles and disfavors the interpretation of previously-reported positive experimental results. The minimum upper limit, 3.7 × 10−44 cm2, for the spin-independent isoscalar DM-particle-nucleon scattering cross section is obtained at a DM-particle mass of 49GeV/c2 at 90% confidence level.

Keywords

dark matter direct detection xenon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See for example, Bertone G, Hooper D, Silk J. Particle dark matter: Evidence, candidates and constraints. Phys Rept, 2005, 405: 279–390CrossRefADSGoogle Scholar
  2. 2.
    Akimov D. Techniques and results for the direct detection of dark matter (review). Nucl Instrum Meth A, 2011, 628: 50–58; Gaitskell R. Direct detection of dark matter. Ann Rev Nucl Part Sci, 2004, 54: 315–359; for more recent experiments, see talks at 2014 Dark Matter Conference at UCLA, https://hepconf.physics.ucla.edu/dm14/agenda.html CrossRefADSGoogle Scholar
  3. 3.
    Jungman G, Kamionkowski M, Griest K. Supersymmetric dark matter. Phys Rept, 1996, 267: 195–373CrossRefADSGoogle Scholar
  4. 4.
    Bernabei R, Belli P, Cappella F, et al. (DAMA Collaboration). First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur Phys J C, 2008, 56: 333–355; Bernabei R, Belli P, Cappella F, et al. (DAMA Collaboration). New results from DAMA/LIBRA. Eur Phys J C, 2010, 67: 39–49; Bernabei R, Belli P, Cappella F, et al. (DAMACollaboration). Final model independent result of DAMA/LIBRA-phase1. Eur Phys J C, 2013, 73: 2468CrossRefADSGoogle Scholar
  5. 5.
    Savage C, Gelmini G, Gondolo P, et al. Compatibility of DAMA/LIBRA dark matter detection with other searches. J Cosmol Astropart Phys, 2009, 0904: 010CrossRefADSGoogle Scholar
  6. 6.
    Aalseth C E, Barbeau P S, Colaresi J, et al. (CoGeNT Collaboration). Results from a search for light-mass dark matter with a p-type point contact germanium detector. Phys Rev Lett, 2011, 106: 131301; Aalseth C E, Barbeau P S, Colaresi J, et al. (CoGeNT Collaboration). CoGeNT: A search for low-mass dark matter using p-type point contact germanium detectors. Phys Rev D, 2013, 88(1): 012002; and latest analysis using maximum likelihood method in arXiv:1401.6234CrossRefADSGoogle Scholar
  7. 7.
    Agnese R, Ahmed Z, Anderson A J, et al. (CDMS Collaboration). Silicon detector dark matter results from the final exposure of CDMS II. Phys Rev Lett, 2013, 111: 251301CrossRefADSGoogle Scholar
  8. 8.
    Angloher G, Bauer M, Bavykina I, et al. (CRESST Collaboration). Results from 730 kg days of the CRESST-II dark matter search. Eur Phys J C, 2012, 72: 1791CrossRefGoogle Scholar
  9. 9.
    Angloher G, Bento A, Bucci C, et al. (CRESST Collaboration). Results on low mass WIMPs using an upgraded CRESST-II detector. arXiv:1407.3146Google Scholar
  10. 10.
    See for example, Volkas R R, Petraki K. Review of asymmetric dark matter. Int J Mod Phys A, 2013, 28: 1330028; Zurek K M. Asymmetric dark matter: Theories, signatures, and constraints. Phys Rept, 2014, 537: 91–121, and the references there-inMathSciNetCrossRefGoogle Scholar
  11. 11.
    Zhao W, Yue Q, Kang K J, et al. (CDEX Collaboration). First results on low-mass WIMPs from the CDEX-1 experiment at the China Jinping underground laboratory. Phys Rev D, 2013, 88: 052004CrossRefADSGoogle Scholar
  12. 12.
    Yue Q, Zhao W, Kang K J, et al. (CDEX Collaboration). Limits on light WIMPs from the CDEX-1 experiment with a p-type pointcontact germanium detector at the China Jingping underground laboratory. arXiv:1404.4946Google Scholar
  13. 13.
    Agnese R, Anderson A J, Asai M, et al. (SuperCDMS Collaboration). Search for low-mass weakly interacting massive particles with super-CDMS. Phys Rev Lett, 2014, 112: 241302CrossRefADSGoogle Scholar
  14. 14.
    Agnese R, Anderson A J, Asai M, et al. (SuperCDMS Collaboration). Search for low-mass weakly interacting massive particles using voltage-assisted calorimetric ionization detection in the SuperCDMS experiment. Phys Rev Lett, 2014, 112: 041302CrossRefADSGoogle Scholar
  15. 15.
    Angle J, Aprile E, Arneodo F, et al. (XENON10 Collaboration). First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory. Phys Rev Lett, 2008, 100: 021303CrossRefADSGoogle Scholar
  16. 16.
    Angle J, Aprile E, Arneodo F, et al. (XENON10 Collaboration). Search for light dark matter in XENON10 data. Phys Rev Lett, 2011, 107: 051301; Erratum-ibid, 2013, 110: 249901CrossRefADSGoogle Scholar
  17. 17.
    Aprile E, Arisaka K, Arneodo F, et al. (XENON100 Collaboration). First dark matter results from the XENON100 experiment. Phys Rev Lett, 2010, 105: 131302CrossRefADSGoogle Scholar
  18. 18.
    Aprile E, Arisaka K, Arneodo F, et al. (XENON100 Collaboration). Dark matter results from 100 live days of XENON100 data. Phys Rev Lett, 2011, 107: 131302CrossRefADSGoogle Scholar
  19. 19.
    Aprile E, Alfonsi M, Arisaka K, et al. (XENON100 Collaboration). Dark matter results from 225 live days of XENON100 data. Phys Rev Lett, 2012, 109: 181301CrossRefADSGoogle Scholar
  20. 20.
    Akerib D S, Araujo H M, Bai X, et al. (LUX Collaboration). First results from the LUX dark matter experiment at the Sanford underground research facility. Phys Rev Lett, 2014, 112: 091303CrossRefADSGoogle Scholar
  21. 21.
    Kang K J, Cheng J P, Chen Y H, et al. Status and prospects of a deep underground laboratory in China. J Phys Conf Ser, 2010, 203: 012028; Wong H T. Dark matter search with sub-keV germanium detectors at the China Jinping underground laboratory. J Phys Conf Ser, 2012, 375: 042061; Li J, Ji X, Haxton W, et al. The second-phase development of the China JinPing underground laboratory. arXiv:1404.2651[physics.ins-det]CrossRefADSGoogle Scholar
  22. 22.
    Cao X G, Chen X, Chen Y H, et al. (PandaX Collaboration). PandaX: A liquid xenon dark matter experiment at CJPL. Sci China-Phys Mech Astron, 2014, 57(8): 1476–1494CrossRefADSGoogle Scholar
  23. 23.
    Aprile E, Doke T. Liquid xenon detectors for particle physics and astrophysics. Rev Mod Phys, 2010, 82: 2053–2097CrossRefADSGoogle Scholar
  24. 24.
    Yoshino K, Sowada U, Schmidt W F. Effect of molecular solutes on electron-drift velocity in liquid Ar, Kr, and Xe. Phys Rev A, 1976, 14: 438–444CrossRefADSGoogle Scholar
  25. 25.
    Szydagis M, Barry N, Kazkaz K, et al. NEST: A comprehensive model for scintillation yield in liquid xenon. J Instrum, 2011, 6: P10002; Szydagis M, Fyhrie A, Thorngren D, et al. Enhancement of NEST capabilities for simulating low-energy recoils in liquid xenon. J Instrum, 2013, 8: C10003CrossRefGoogle Scholar
  26. 26.
    Agostinelli S, Allison J, Amako K, et al. GEANT4—a simulation toolkit. Nucl Instrum Methods Phys Res Sect A-Accel Spectrom Dect Assoc Equip, 2003, 506(3): 250–303; Allison J, Amako K, Apostolakis J, et al. Geant4 developments and applications. IEEE Trans Nucl Sci, 2006, 53(1): 270–278CrossRefADSGoogle Scholar
  27. 27.
    Dobi A, Davis C, Hall C, et al. Detection of krypton in xenon for dark matter applications. Nucl Instrum Methods Phys Res Sect A-Accel Spectrom Dect Assoc Equip, 2011, 665: 1–6CrossRefADSGoogle Scholar
  28. 28.
    Smith M C, Ruchti G R, Helmi A, et al. The RAVE survey: Constraining the local Galactic escape speed. Mon Not R Astron Soc, 2007, 379: 755–772CrossRefADSGoogle Scholar
  29. 29.
    Savage C, Freese K, Gondolo P. Annual modulation of dark matter in the presence of streams. Phys Rev D, 2006, 74: 043531CrossRefADSGoogle Scholar
  30. 30.
    Feldman G J, Cousins R D. Unified approach to the classical statistical analysis of small signals. Phys Rev D, 1998, 57: 3873–3889CrossRefADSGoogle Scholar
  31. 31.
    Mu W, Xiong X N, Ji X D. Scintillation efficiency for low energy nuclear recoils in liquid xenon dark matter detectors. Astropart Phys, 2014, 61: 56–61CrossRefADSGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • MengJiao Xiao
    • 1
  • Xiang Xiao
    • 1
  • Li Zhao
    • 1
  • XiGuang Cao
    • 4
  • Xun Chen
    • 1
  • YunHua Chen
    • 8
  • XiangYi Cui
    • 1
  • DeQing Fang
    • 4
  • ChangBo Fu
    • 1
  • Karl L. Giboni
    • 1
  • HaoWei Gong
    • 1
  • GuoDong Guo
    • 1
  • Jie Hu
    • 1
  • XingTao Huang
    • 3
  • XiangDong Ji
    • 1
    • 6
    • 7
  • YongLin Ju
    • 2
  • SiAo Lei
    • 1
  • ShaoLi Li
    • 1
  • Qing Lin
    • 1
  • HuaXuan Liu
    • 2
  • JiangLai Liu
    • 1
  • Xiang Liu
    • 1
  • Wolfgang Lorenzon
    • 5
  • YuGang Ma
    • 4
  • YaJun Mao
    • 6
  • KaiXuan Ni
    • 1
  • Kirill Pushkin
    • 1
    • 5
  • XiangXiang Ren
    • 3
  • Michael Schubnell
    • 5
  • ManBing Shen
    • 8
  • Scott Stephenson
    • 5
  • AnDi Tan
    • 7
  • Greg Tarlé
    • 5
  • HongWei Wang
    • 4
  • JiMin Wang
    • 8
  • Meng Wang
    • 3
  • XuMing Wang
    • 1
  • Zhou Wang
    • 2
  • YueHuan Wei
    • 1
    • 9
  • ShiYong Wu
    • 8
  • PengWei Xie
    • 1
  • YingHui You
    • 8
  • XiongHui Zeng
    • 8
  • Hua Zhang
    • 2
  • Tao Zhang
    • 1
  • ZhongHua Zhu
    • 8
  • The PandaX Collaboration
  1. 1.The Institute of Nuclear and Particle Physics, Astronomy and Cosmology (INPAC) and Department of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  3. 3.School of Physics and Key Laboratory of Particle Physics and Particle Irradiation (MOE)Shandong UniversityJinanChina
  4. 4.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  5. 5.Department of PhysicsUniversity of MichiganAnn ArborUSA
  6. 6.School of PhysicsPeking UniversityBeijingChina
  7. 7.Department of PhysicsUniversity of MarylandCollege ParkUSA
  8. 8.Yalong River Hydropower Development Company, Ltd.ChengduChina
  9. 9.Physics InstituteUniversity of ZürichZürichSwitzerland

Personalised recommendations