Advertisement

Science China Physics, Mechanics & Astronomy

, Volume 57, Issue 7, pp 1407–1412 | Cite as

Parton physics from large-momentum effective field theory

  • XiangDong Ji
Letter

Abstract

Parton physics, when formulated as light-front correlations, are difficult to study non-perturbatively, despite the promise of light-front quantization. Recently an alternative approach to partons have been proposed by re-visiting original Feynman picture of a hadron moving at asymptotically large momentum. Here I formulate the approach in the language of an effective field theory for a large hadron momentum P in lattice QCD, LaMET for short. I show that using this new effective theory, parton properties, including light-front parton wave functions, can be extracted from lattice observables in a systematic expansion of 1/P, much like that the parton distributions can be extracted from the hard scattering data at momentum scales of a few GeV.

Keywords

partons effective field theory lattice QCD high-energy scattering proton structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The CMS Collaboration. A new boson with a mass of 125 GeV observed with the CMS experiment at the Large Hadron Collider. Science, 2012, 338(6114): 1569–1575; The ATLAS Collaboration. A particle consistent with the Higgs boson observed with the ATLAS detector at the Large Hadron Collider. Science, 2012, 338 (6114): 1576–1582ADSCrossRefGoogle Scholar
  2. 2.
    Feynman R P. Very high-energy collisions of hadrons. Phys Rev Lett, 1969, 23: 1415–1417ADSCrossRefGoogle Scholar
  3. 3.
    Mueller A H. Perturbative Quantum Chromodynamics. Singapore: World Scientific, 1989. 614 (Advanced series on directions in High Energy Physics Volume 5)zbMATHGoogle Scholar
  4. 4.
    Sterman G F. An Introduction to Quantum Field Theory. Cambridge: Cambridge University Press, 1993. 572CrossRefGoogle Scholar
  5. 5.
    Collins J. Foundations of Perturbative QCD. Serie: Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology 32. Cambridge: Cambridge University Press, 2011CrossRefGoogle Scholar
  6. 6.
    Altarelli G, Parisi G. Asymptotic freedom in Parton Language. Nucl Phys B, 1977, 126: 298–318; Gribov V N, Lipatov L N. Deep inelastic e p scattering in perturbation theory. Sov J Nucl Phys, 1972, 15: 438–450 [Yad Fiz, 1972, 15: 781–807]; Dokshitzer Y L. Calculation of the structure functions for deep inelastic scattering and e+ e- annihilation by perturbation theory in quantum chromodynamics. Sov Phys JETP, 1977, 46: 641–653 [Zh Eksp Teor Fiz, 1977, 73: 1216–1240]ADSCrossRefGoogle Scholar
  7. 7.
    Weinberg S. Dynamics at infinite momentum. Phys Rev, 1966, 150: 1313–1318ADSCrossRefGoogle Scholar
  8. 8.
    Drell S D, Levy D J, Yan T-M. A field theoretic model for electronnucleon deep inelastic scattering. Phys Rev Lett, 1969, 22: 744–748; Drell S D, Levy D J, Yan T-M. A theory of deep inelastic leptonnucleon scattering and lepton pair annihilation processes. 1. Phys Rev, 1969, 187: 2159–2171; Drell S D, Levy D J, Yan T-M. A theory of deep inelastic lepton nucleon scattering and lepton pair annihilation processes. 2. Deep inelastic electron scattering. Phys Rev D, 1970, 1: 1035–1068ADSCrossRefGoogle Scholar
  9. 9.
    Collins J C, Soper D E. Parton distribution and decay functions. Nucl Phys B, 1982, 194: 445–492ADSCrossRefGoogle Scholar
  10. 10.
    Wilson K G. Confinement of quarks. Phys Rev D, 1974, 10: 2445–2459ADSCrossRefGoogle Scholar
  11. 11.
    See for example, Negele J W. Understanding parton distributions from lattice QCD: Present limitations and future promise. Nucl Phys A, 2002, 711: 281–290 [hep-lat/0211022]; Hagler P, et al. [LHPC Collaboration] Nucleon generalized parton distributions from full lattice QCD. Phys Rev D, 2008, 77: 094502 [arXiv:0705.4295 [hep-lat]]; Davoudi Z, Savage M J. Restoration of rotational symmetry in the continuum limit of lattice field theories. Phys Rev D, 2012, 86: 054505 [arXiv:1204.4146 [hep-lat]]ADSCrossRefGoogle Scholar
  12. 12.
    Aglietti U, Ciuchini M, Corbo G, et al. Model independent determination of the shape function for inclusive B decays and of the structure functions in DIS. Phys Lett B, 1998, 432: 411–420 [hep-ph/9804416]ADSCrossRefGoogle Scholar
  13. 13.
    Liu K-F. Parton degrees of freedom from the path integral formalism. Phys Rev D, 2000, 62: 074501 [hep-ph/9910306]ADSCrossRefGoogle Scholar
  14. 14.
    Detmold W, Lin C J D. Deep-inelastic scattering and the operator product expansion in lattice QCD. Phys Rev D, 2006, 73: 014501 [heplat/0507007]ADSCrossRefGoogle Scholar
  15. 15.
    Ji X. Quantum field theory in light front coordinates. Comm Nucl Part Phys, 1993, 21: 123–136Google Scholar
  16. 16.
    Burkardt M. Light front quantization. Adv Nucl Phys, 1996, 23: 1–74 [hep-ph/9505259]Google Scholar
  17. 17.
    Brodsky S J, Pauli H-C, Pinsky S S. Quantum chromodynamics and other field theories on the light cone. Phys Rept, 1998, 301: 299–486 [hep-ph/9705477]ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    Dirac P A M. Forms of relativistic dynamics. Rev Mod Phys, 1949, 21: 392–399ADSCrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Ji X, Ma J-P, Yuan F. Three quark light cone amplitudes of the proton and quark orbital motion dependent observables. Nucl Phys B, 2003, 652: 383–404 [hep-ph/0210430]ADSCrossRefGoogle Scholar
  20. 20.
    Ji X-D, Ma J-P, Yuan F. Classification and asymptotic scaling of hadrons’ light cone wave function amplitudes. Eur Phys J C, 2004, 33: 75–90 [hep-ph/0304107]ADSCrossRefGoogle Scholar
  21. 21.
    Bardeen W A, Pearson R B, Rabinovici E. Hadron masses in quantum chromodynamics on the transverse lattice. Phys Rev D, 1980, 21: 1037; Burkardt M, Dalley S. The Relativistic bound state problem in QCD: Transverse lattice methods. Prog Part Nucl Phys, 2002, 48: 317–362 [hep-ph/0112007]; Grunewald D, Ilgenfritz E-M, Prokhvatilov E V, et al. Formulating light cone QCD on the lattice. Phys Rev D, 2008, 77: 014512 [arXiv:0711.0620 [hep-lat]]ADSCrossRefGoogle Scholar
  22. 22.
    Ji X. Parton physics on a Euclidean lattice. Phys Rev Lett, 2013, 110(26): 262002 [arXiv:1305.1539 [hep-ph]]ADSCrossRefGoogle Scholar
  23. 23.
    Ji X, Zhang J-H, Zhao Y. Physics of the gluon-helicity contribution to proton spin. Phys Rev Lett, 2013, 111(11): 112002 [arXiv:1304.6708 [hep-ph]]ADSCrossRefGoogle Scholar
  24. 24.
    Xiong X, Ji X, Zhang J-H, et al. One-loop matching for parton distributions: Non-singlet case. arXiv:1310.7471 [hep-ph]Google Scholar
  25. 25.
    Lin H-W, Chen J-W, Cohen S D, et al. Flavor structure of the nucleon sea from lattice QCD. arXiv:1402.1462 [hep-ph]Google Scholar
  26. 26.
    Hatta Y, Ji X, Zhao Y. Gluon helicity delta G from a universality class of operators on a lattice. arXiv:1310.4263 [hep-ph]Google Scholar
  27. 27.
    Manohar A V, Wise M B. Heavy Quark Physics. Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, volume 10. Cambridge: Cambridge University Press, 2000. 1Google Scholar
  28. 28.
    Collins J C. Renormalization: An Introduction to Renormalization, the Renormalization Group, and the Operator Product Expansion. Cambridge: Cambridge University Press, 1984. 380CrossRefzbMATHGoogle Scholar
  29. 29.
    Ji X, Yuan F. Parton distributions in light cone gauge: Where are the final state interactions? Phys Lett B, 2002, 543: 66–72 [hepph/0206057]; Belitsky A V, Ji X, Yuan F. Final state interactions and gauge invariant parton distributions. Nucl Phys B, 2003, 656: 165–198 [hep-ph/0208038]ADSCrossRefGoogle Scholar
  30. 30.
    See for example, Gao J, Guzzi M, Huston J, et al. The CT10 NNLO global analysis of QCD. arXiv:1302.6246 [hep-ph]; Lai H-L, Guzzi M, Huston J, et al. New parton distributions for collider physics. Phys Rev D, 2010, 82: 074024 [arXiv:1007.2241 [hep-ph]Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.INPAC, Department of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Maryland Center for Fundamental Physics, Department of PhysicsUniversity of MarylandCollege ParkUSA

Personalised recommendations