Science China Physics, Mechanics & Astronomy

, Volume 57, Issue 6, pp 1206–1208 | Cite as

Double-peaked decay of transient photovoltage in nanoporous ZnO/n-Si photodetector

Letter

Abstract

In the present work, a nanoporous ZnO/n-Si structure has been proposed as a new type infrared photodetector. Triggered by one laser pulse with wavelength of 1064 nm, this structure exhibits a double-peak decay of transient photovoltage. Also, the time interval between these two peaks increases linearly with the increase of irradiated pulsed energy, indicating the promising application of this hetero-junction in photo-energy detection of infrared pulsed laser. A possible mechanism for this particular photoresponse has been discussed.

Keywords

ZnO sol-gel photovoltage photodetector 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Konstantatos G, Sargent E. Nanostructured materials for photon detection. Nat Nanotechnol, 2010, 5: 391–400ADSCrossRefGoogle Scholar
  2. 2.
    Zhai T, Li L, Wang X, et al. Recent developments in one-dimensional inorganic nanostructures for photodetectors. Adv Funct Mater, 2010, 20: 4233–4248CrossRefGoogle Scholar
  3. 3.
    Soci C, Zhang A, Xiang B, et al. ZnO nanowire UV photodetectors with high internal gain. Nano Lett, 2007, 7: 1003–1009ADSCrossRefGoogle Scholar
  4. 4.
    Ghosh R, Dutta M, Basak D. Self-seeded growth and ultraviolet photoresponse properties of ZnO nanowire arrays. Appl Phys Lett, 2007, 91: 073108ADSCrossRefGoogle Scholar
  5. 5.
    Xia F, Mueller T, Lin Y M, et al. Ultrafast graphene photodetector. Nat Nanotechnol, 2009, 4: 839–843ADSCrossRefGoogle Scholar
  6. 6.
    Gan X, Shiue R J, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat Photonics, 2013, 7: 883–887ADSCrossRefGoogle Scholar
  7. 7.
    Zhang B, Liu T, Meng B, et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nat Commun, 2013, 4: 1811ADSCrossRefGoogle Scholar
  8. 8.
    Yang Q, Wang W, Xu S, et al. Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect. Nano Lett, 2011, 11: 4012–4017ADSCrossRefGoogle Scholar
  9. 9.
    Wang L, Yue Q, Li H, et al. Facet-dependent electrochemiluminescence spectrum of nanostructured ZnO. Sci China-Chem, 2013, 56: 86–92CrossRefGoogle Scholar
  10. 10.
    Chu S, Wang G, Zhou W, et al. Electrically pumped waveguide lasing from ZnO nanowires. Nat Nanotechnol, 2011, 6: 506–510ADSCrossRefGoogle Scholar
  11. 11.
    Sun J, Dai Q, Liu F, et al. The ultraviolet photoconductive detector based on Al-doped ZnO thin film with fast response. Sci China-Phys Mech Astron, 2011, 54: 102–105ADSCrossRefGoogle Scholar
  12. 12.
    Liu H, Zhao S, Zhao K, et al. Photovoltaic responses of ZnO/Si heterojunctions synthesized by sol-gel method. Eur Phys J Appl Phys, 2011, 55: 10501ADSCrossRefGoogle Scholar
  13. 13.
    Zhou H, Fang G, Yuan L, et al. Deep ultraviolet and near infrared photodiode based on n-ZnO/p-silicon nanowire heterojunction fabricated at low temperature. Appl Phys Lett, 2009, 94: 013503ADSCrossRefGoogle Scholar
  14. 14.
    Dai W, Yang Q, Gu F, et al. ZnO subwavelength wires for fast-response mid-infrared detection. Opt Express, 2009, 17: 21808–21812CrossRefGoogle Scholar
  15. 15.
    Ryu H W, Park B S, Akbar S A, et al. ZnO sol-gel derived porous film for CO gas sensing. Sens Actuators B, 2003, 96: 717–722CrossRefGoogle Scholar
  16. 16.
    Hurd C M, McKinnon W R. Double-peaked decay of transient photocurrents in gas metal-semiconductor-metal photodetectors. J Appl Phys, 1997, 82: 722–728ADSCrossRefGoogle Scholar
  17. 17.
    Dunn G M, Walker A B, Vickers A J, et al. Transient response of photodetectors. J Appl Phys, 1996, 79: 7329–7338ADSCrossRefGoogle Scholar
  18. 18.
    Vickers A J, Hassan M A, Mashakekhi H R, et al. Study of a backgated metal-semiconductor-metal photodetector. Appl Phys Lett, 1996, 68: 815–817ADSCrossRefGoogle Scholar
  19. 19.
    Bera A, Basak D. Role of defects in the anomalous photoconductivity in ZnO nanowires. Appl Phys Lett, 2009, 94: 163119ADSCrossRefGoogle Scholar
  20. 20.
    Studenikin S A, Golego N, Cocivera M. Optical and electrical properties of undoped ZnO films grown by spray pyrolysis of zinc nitrate solution. J Appl Phys, 1998, 83: 2104–2111ADSCrossRefGoogle Scholar
  21. 21.
    Anghel C, Derycke V, Filoramo A, et al. Nanotube transistors as direct probes of the trap dynamics at dielectric-organic interfaces of interest in organic electronics and solar cells. Nano Lett, 2008, 8: 3619–3625ADSCrossRefGoogle Scholar
  22. 22.
    Kuo B S W, Schmid A W. Effects of thin film thermal conductivity on the optical damage threshold of a-Si film on c-Si substrate at 1064 nm. J Appl Phys, 1993, 74: 5159–5163ADSCrossRefGoogle Scholar
  23. 23.
    Hattori A, Moriguchi H, Ishiwata S, et al. A 1480/1064 nm dual wavelength photo-thermal etching system for non-contact three-dimensional microstructure generation into agar microculture chip. Sens Actuators B, 2004, 100: 455–462CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Petroleum Resources and ProspectingChina University of PetroleumBeijingChina
  2. 2.Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric DetectionChina Petroleum and Chemical Industry Federation (CPCIF)BeijingChina

Personalised recommendations