Advertisement

Description of the properties of the low-lying energy states in 100Mo with IBM2

  • DaLi ZhangEmail author
  • BinGang Ding
Article

Abstract

The properties of the low-lying energy states for the 100Mo isotope is investigated within the framework of the proton-neutron interacting model IBM2. By considering the relative energy of the d proton boson to be different from that of the neutron boson and taking into account the dipole interacting among like-boson \(\hat L_\pi \cdot \hat L_\pi \) and \(\hat L_\nu \cdot \hat L_\nu \), the low-lying energy spectrum is reproduced well. Particularly, the relative position of the energies for 2 1 + , 0 2 + , 2 2 + and 4 1 + states shifted correctly fit the experimental data. The electromagnetic properties, including the key observable B(E2) reduced transition branching ratios and the E2 reduced matrix elements of the experimental data, are well described. Our calculations show possible shape coexistence in the 100Mo nucleus.

Keywords

100Mo shape coexistence low-ling energy states IBM2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Urban W, Jentschel M, Casten R F, et al. 0+2 band in 102Ru and the evolution of nuclear deformation in Ru isotopes. Phys Rev C, 2013, 87: 031304(R)ADSCrossRefGoogle Scholar
  2. 2.
    Thomas J S, Freeman S J, Deibel C M, et al. Neutron pair correlations in A = 100 nuclei involved in neutronless double-β decay. Phys Rev C, 2012, 86: 047304ADSCrossRefGoogle Scholar
  3. 3.
    Zielińska M, Czosnyka T, Choiński J, et al. Electromagnetic structure of 98Mo. Nucl Phys A, 2002, 712: 3–13; Barea J, Kotila J, Iachello F. Nuclear matrix elements for double-β decay. Phys Rev C, 2013, 87: 014315(R)ADSCrossRefGoogle Scholar
  4. 4.
    Heyde K, Jolie J, Moreau J, et al. A shell model description of 0+ intruder state in even-even nuclei. Nucl Phys A, 1987, 466: 189–226ADSCrossRefGoogle Scholar
  5. 5.
    Kirchuk E, Federman P, Pittel S. Nuclear deformation in the mass-80 and mass-100 regions. Phys Rev C, 1993, 47: 567–572ADSCrossRefGoogle Scholar
  6. 6.
    Charlwood F C, Baczynska K, Billowes J, et al. Nuclear charge radii of molybdenum fission fragments. Phys Lett B, 2009, 674: 23–27ADSCrossRefGoogle Scholar
  7. 7.
    Rodǵuez-Guzmán R, Sarriguren P, Robledo L M, et al. Charge radii and structural evolution in Sr, Zr, and Mo isotopes. Phys Lett B, 2010, 691: 202–207ADSCrossRefGoogle Scholar
  8. 8.
    Kotila J, Suhonen J, Delion D S. Study of the low-lting collective states in 94–100Mo isotopes using the MAVA. Nucl Phys A, 2006, 765: 354–369ADSCrossRefGoogle Scholar
  9. 9.
    Iachello F, Arima A. The Interacting Boson Model. Cambridge: Cambridge University Press, 1987CrossRefGoogle Scholar
  10. 10.
    Sambataro M, Molnár G. Configuration mixing in Mo isotopes. Nucl Phys A, 1982, 376: 201–212ADSCrossRefGoogle Scholar
  11. 11.
    Dejbakhsh H, Latypov D, Ajupova D. Exploring the validity of Z = 38 and Z = 50 proton closed shells in even-even Mo isotopes. Phys Rev C, 1992, 46: 2326–2332ADSCrossRefGoogle Scholar
  12. 12.
    Cata G, Bucurescu D, Cutoiu D, et al. Effective boson number calculations in Mo and Cd isotopes. Z Phys A, 1992, 335: 271–278ADSGoogle Scholar
  13. 13.
    Zhang J F, AL-Khudair H F, Long G L, et al. Mixing symmetry states in even-even 96–108Mo nuclei. Commun Theor Phys, 2002, 37: 335–340Google Scholar
  14. 14.
    AL-Khudair H F, Long G L. Detailed description of mixed symmetry states in 94Mo using interacting boson model. Commun Theor Phys, 2002, 37: 669–705Google Scholar
  15. 15.
    Fransen C, Pietralla N, Ammar Z, et al. Comprehensive studies of lowspin collective excitations in 94Mo. Phys Rev C, 2003, 67: 024307ADSCrossRefGoogle Scholar
  16. 16.
    Kneissl U, Pietralla N, Zilges A. Low-lying dipole model in vibrational nuclei studied by proton scattering. J Phys G, 2006, 32: R217–R252ADSCrossRefGoogle Scholar
  17. 17.
    Minkov N, Drenska S, Strecker M, et al. Non-yrast nuclear spectra in a model of coherent quadrupole-octupole motion. Phys Rev C, 2012, 85: 034306ADSCrossRefGoogle Scholar
  18. 18.
    Wrzosek-Lipska K, Próchniak L, Zielińska M, et al. Electromagnetic properties of 100Mo. Phys Rev C, 2012, 86: 064305ADSCrossRefGoogle Scholar
  19. 19.
    Bäck T, Qi C, Cederwall B, et al. Transition probabilities near 100Mo and the stability of tyhe N, Z = 50 shell closure. Phys Rev C, 2013, 87: 031306(R)ADSCrossRefGoogle Scholar
  20. 20.
    Faestermann T, Górska M, Grawe H. The structure of 100Mo and neighbouring nuclei. Prog Part Nucl Phys, 2013, 69: 85–130ADSCrossRefGoogle Scholar
  21. 21.
    Otsuka T, Yoshida N. Programe NPBOS. JAER-M Report, 1985 No.85,unpublishedGoogle Scholar
  22. 22.
    Caprio M A, Iachello F. Phase structure of a two-fluid bosonic system. Ann Phys 2005, 318: 454–494ADSCrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Regan P H, Beausang C W, Zamfir N V, et al. Signature foe vibrational to rotational evolution along the yrast line. Phys Rev Lett, 2003, 90: 152502ADSCrossRefGoogle Scholar
  24. 24.
    Cejner P, Jolie J, Casten R F, et al. Quantum phase transitions in the shapes of atomic nuclei. Rev Mod Phys, 2010, 82: 2155–2312ADSCrossRefGoogle Scholar
  25. 25.
    Zhang Y, Hou Z F, Liu Y X. Distinguishing a first order from a second order nuclear shape phase transition in the interacting boson model. Phys Rev C, 2007, 76: 011305(R)ADSCrossRefGoogle Scholar
  26. 26.
    Hou Z F, Zhang Y, liu Y X. Understanding nuclear shape phase transitions at the nucleon level with a boson mapping approach. Phys Lett B, 2010, 688: 298–302ADSCrossRefGoogle Scholar
  27. 27.
    Zhang Y, Pan F, Liu Y X, et al. Analytically solvable prolate-oblate shape phase transitional description within the SU(3) limit of the interacting boson model. Phys Rev C, 2012, 85: 064312ADSCrossRefGoogle Scholar
  28. 28.
    Albers M, Nomura K, Warr N, et al. Shape dynamics in neutron-rich Kr isotopes. Nucl Phys A, 2013, 899: 1–28ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PhysicsHuzhou Teacher’s CollegeHuzhouChina

Personalised recommendations