Controlling the surface buckling wrinkles by patterning the material system of hard-nano-film/soft-matter-substrate

  • Dan Wu
  • YaJun Yin
  • HuiMin XieEmail author
  • YuanFang Shang
  • ChuanWei Li
  • LiFu Wu
  • XiangLu Dai


Wrinkling and buckling of nano-films on the compliant substrate are always induced due to thermal deformation mismatch. This paper proposes effective means to control the surface wrinkling of thin film on the compliant substrate, which exploits the curvatures of the curve cracks designed on the stiff film. The procedures of the method are summarized as: 1) curve patterns are fabricated on the surface of PDMS (Polydimethylsiloxane) substrate and then the aluminum film with the thickness of several hundred nano-meters is deposited on the substrate; 2) the curve patterns are transferred onto the aluminum film and lead to cracking of the film along the curves. The cracking redistributes the stress in the compressed film on the substrate; 3) on the concave side of the curve, the wrinkling of the film surface is suppressed to be identified as shielding effect and on the convex side the wrinkling of the film surface is induced to be identified as inductive effect. The shielding and inductive effects make the dis-ordered wrinkling and buckling controllable. This phenomenon provides a potential application in the fabrication of flexible electronic devices.


mismatch of thermal deformation wrinkling and buckling inductive effect shielding effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller A F. Materials science: Exploiting wrinkle formation. Science, 2007, 317(5838): 605–606CrossRefGoogle Scholar
  2. 2.
    Bowden N, Huck W, Paul K, et al. The controlled formation of ordered sinusoidal structures by plasma oxidation of an elastomeric polymer. Appl Phys Lett, 1999, 75(17): 2557–2559ADSCrossRefGoogle Scholar
  3. 3.
    Chung J Y, Nolte A J, Stafford C M. Surface wrinkling: A versatile platform for measuring thin-film properties. Adv Mater, 2011, 23(3): 349–368CrossRefGoogle Scholar
  4. 4.
    Genzer J, Groenewold J. Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter, 2006, 2(4): 310–323ADSCrossRefGoogle Scholar
  5. 5.
    Gruner P, Arlt M, Fuhrmann-Lieker T. Surface wrinkling induced by photofluidization of low molecular azo glasses. Chem Phys Chem, 2013, 14(2): 424–430CrossRefGoogle Scholar
  6. 6.
    Bowden N, Brittain S, Evans A, et al. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature, 1998, 393(6681): 146–149ADSCrossRefGoogle Scholar
  7. 7.
    Yoo P, Suh K, Kang H, et al. Polymer elasticity-driven wrinkling and coarsening in high temperature buckling of metal-capped polymer thin films. Phys Rev Lett, 2004, 93(3): 034301ADSCrossRefGoogle Scholar
  8. 8.
    Feng X, Yang B D, Liu Y M, et al. Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. ACS Nano, 2011, 5(4): 3326–3332CrossRefGoogle Scholar
  9. 9.
    Song J, Jiang H, Liu Z J, et al. Buckling of a stiff thin film on a compliant substrate in large deformation. Int J Solids Struct, 2008, 45(10): 3107–3121CrossRefzbMATHGoogle Scholar
  10. 10.
    Yu C, Pan Y, Ma H, et al. Thermoresponsiveness of integrated ultra-thin silicon with poly(N-isopropylacrylamide) hydrogels. Macromol Rapid Commun, 2011, 32(11): 820–824CrossRefGoogle Scholar
  11. 11.
    Lam M T, Clem W C, Takayama S. Reversible on-demand cell alignment using reconfigurable microtopography. Biomaterials, 2008, 29(11): 1705–1712CrossRefGoogle Scholar
  12. 12.
    Xuan Y, Guo X, Cui Y, et al. Crack-free controlled wrinkling of a bilayer film with a gradient interface. Soft Matter, 2012, 8(37): 9603–9609ADSCrossRefGoogle Scholar
  13. 13.
    Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327(5973): 1603–1607ADSCrossRefGoogle Scholar
  14. 14.
    Chan E P, Crosby A J. Fabricating microlens arrays by surface wrinkling. Adv Mater, 2006, 18(24): 3238–3242CrossRefGoogle Scholar
  15. 15.
    Okayasu T, Zhang H L, Bucknall D G. Spontaneous formation of ordered lateral patterns in polymer thin-film structures. Adv Funct Mater, 2004, 14(11): 1081–1088CrossRefGoogle Scholar
  16. 16.
    Schweikart A, Fery A. Controlled wrinkling as a novel method for the fabrication of patterned surfaces. Microchim Acta, 2009, 165(3–4): 249–263CrossRefGoogle Scholar
  17. 17.
    Chan E P, Crosby A J. Spontaneous formation of stable aligned wrinkling patterns. Soft Matter, 2006, 2(4): 324–328ADSCrossRefGoogle Scholar
  18. 18.
    Uchida N, Ohzono T. Orientational ordering of buckling-induced microwrinkles on soft substrates. Soft Matter, 2010, 6(22): 5729–5735ADSCrossRefGoogle Scholar
  19. 19.
    Wu D, Yin Y J, Xie H M. The archimedes spiral cracks developed in the nano-film/substrate system. Chin Phys Lett, 2013, 30(3): 036801ADSCrossRefGoogle Scholar
  20. 20.
    Chan E P, Crosby A J. Fabricating microlens arrays by surface wrinkling. Adv Mater, 2006, 18: 3238–3242CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dan Wu
    • 1
  • YaJun Yin
    • 1
  • HuiMin Xie
    • 1
    Email author
  • YuanFang Shang
    • 2
  • ChuanWei Li
    • 1
  • LiFu Wu
    • 1
  • XiangLu Dai
    • 1
  1. 1.Key Laboratory of Applied Mechanics (AML), Department of Engineering MechanicsTsinghua UniversityBeijingChina
  2. 2.The State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision InstrumentsTsinghua UniversityBeijingChina

Personalised recommendations