Advertisement

Science China Physics, Mechanics and Astronomy

, Volume 57, Issue 2, pp 194–207 | Cite as

Dynamics of quantum zeno and anti-zeno effects in an open system

  • Peng Zhang
  • Qing Ai
  • Yong Li
  • DaZhi Xu
  • ChangPu SunEmail author
Article Progress of Projects Supported by NSFC

Abstract

We provide a general dynamical approach for the quantum Zeno and anti-Zeno effects in an open quantum system under repeated non-demolition measurements. In our approach the repeated measurements are described by a general dynamical model without the wave function collapse postulation. Based on that model, we further study both the short-time and long-time evolutions of the open quantum system under repeated non-demolition measurements, and derive the measurement-modified decay rates of the excited state. In the cases with frequent ideal measurements at zero-temperature, we re-obtain the same decay rate as that from the wave function collapse postulation (Nature, 2000, 405: 546). The correction to the ideal decay rate is also obtained under the non-ideal measurements. Especially, we find that the quantum Zeno and anti-Zeno effects are possibly enhanced by the non-ideal natures of measurements. For the open system under measurements with arbitrary period, we generally derive the rate equation for the long-time evolution for the cases with arbitrary temperature and noise spectrum, and show that in the long-time evolution the noise spectrum is effectively tuned by the repeated measurements. Our approach is also able to describe the quantum Zeno and anti-Zeno effects given by the phase modulation pulses, as well as the relevant quantum control schemes.

Keywords

quantum Zeno effect quantum anti-Zeno effect quantum measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Misra B, Sudarshan E C G. The Zeno’s paradox in quantum theory. J Math Phys, 1977, 18: 756–763ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    Kofman A G, Kurizki G. Acceleration of quantum decay processes by frequent observations. Nature, 2000, 405: 546–550ADSCrossRefGoogle Scholar
  3. 3.
    Lewenstein M, Rzazewski K. Quantum anti-Zeno effect. Phys Rev A, 2000, 61: 022105ADSCrossRefGoogle Scholar
  4. 4.
    Itano W M, Heinzen D J, Bollinger J J, et al. Quantum Zeno effect. Phys Rev A, 1990, 41: 2295–2300ADSCrossRefGoogle Scholar
  5. 5.
    Balzer C, Huesmann R, Neuhauser W, et al. The quantum Zeno effectevolution of an atom impeded by measurement. Opt Commun, 2000, 180: 115–120ADSCrossRefGoogle Scholar
  6. 6.
    Fischer M C, Gutierrez-Medina B, Raizen M G. Observation of the quantum Zeno and anti-Zeno effects in an unstable system. Phys Rev Lett, 2001, 87: 040402ADSCrossRefGoogle Scholar
  7. 7.
    Wilkinson S R, Bharucha C F, Fischer M C, et al. Experimental evidence for non-exponential decay in quantum tunnelling. Nature, 1997, 387: 575–577ADSCrossRefGoogle Scholar
  8. 8.
    Streed E W, Mun J, Boyd M, et al. Continuous and pulsed quantum Zeno effect. Phys Rev Lett, 2006, 97: 260402ADSCrossRefGoogle Scholar
  9. 9.
    Nagels B, Hermans L J F, Chapovsky P L. Quantum Zeno effect induced by collisions. Phys Rev Lett, 1997, 79: 3097–3100ADSCrossRefGoogle Scholar
  10. 10.
    Bernu J, Deleglise S, Sayrin C, et al. Freezing coherent field growth in a cavity by the quantum Zeno effect. Phys Rev Lett, 2008, 101: 180402ADSCrossRefGoogle Scholar
  11. 11.
    Peres A, Ron A. Incomplete collapse” and partial quantum Zeno effect. Phys Rev A, 1990, 42: 5720–5722ADSCrossRefGoogle Scholar
  12. 12.
    Ballentine L E. Limitations of projection postulate. Found Phys, 1990, 20: 1329–1343ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    Petrosky T, Tasaki S, Prigogine I. Quantum zeno effect. Phys Lett A, 1990, 151: 109–113ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Petrosky T, Tasaki S, Prigogine I. Quantum zeno effect. Physica A, 1991, 170: 306–325ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    Block E, Berman P R. Quantum Zeno effect and quantum Zeno paradox in atomic physics. Phys Rev A, 1991, 44: 1466–1472ADSCrossRefGoogle Scholar
  16. 16.
    Frerichs V, Schenzle A. Quantum Zeno effect without collapse of the wave packet. Phys Rev A, 1991, 44: 1962–1968ADSCrossRefGoogle Scholar
  17. 17.
    Ballentine L E. Comment on Quantum Zeno effect”. Phys Rev A, 1991, 43: 5165–5167ADSCrossRefGoogle Scholar
  18. 18.
    Home D, Whitaker M A B. A critical re-examination of the quantum Zeno paradox. J Phys A-Math Gen, 1992, 25: 657–664ADSCrossRefGoogle Scholar
  19. 19.
    Pascazio S, Namiki M, Badurek G, et al. Quantum Zeno effect with neutron spin. Phys Lett A, 1993, 179: 155–160ADSCrossRefGoogle Scholar
  20. 20.
    Gagen M J, Milburn G J. Atomic tests of the Zeno effect. Phys Rev A, 1993, 47: 1467–1479ADSCrossRefGoogle Scholar
  21. 21.
    Home D, Whitaker M A B. A unified framework for quantum Zeno processes. Phys Lett A, 1993, 173: 327–331ADSCrossRefGoogle Scholar
  22. 22.
    Rivera A L, Chumakov S M. Zeno paradox and radiation trapping in three-level systems. J Mod Opt, 1994, 41: 839–845ADSCrossRefGoogle Scholar
  23. 23.
    Altenmuller T P, Schenzle A. Quantum Zeno effect in a double-well potential: A model of a physical measurement. Phys Rev A, 1994, 49: 2016–2027ADSCrossRefGoogle Scholar
  24. 24.
    Pascazio S, Namiki M. Dynamical quantum Zeno effect. Phys Rev A, 1994, 50: 4582–4592ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    Sun C P. In: Feng D H, Hu B L, eds. Quantum Classical Correspondence: The 4th Drexel Symposium on Quantum Nonintegrability. Cambridge: International Press, 1994. 99Google Scholar
  26. 26.
    Sun C P, Yi X X, Liu X J. Quantum dynamical approach of wavefunction collapse in measurement process and its application to quantum Zeno effect. Fortschr Phys, 1995, 43: 585–612CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Beige A, Hegerfeldt G C. Projection postulate and atomic quantum Zeno effect. Phys Rev A, 1996, 53: 53–65ADSCrossRefGoogle Scholar
  28. 28.
    Home D, Whitaker M A B. A conceptual analysis of quantum Zeno; paradox, measurement, and experiment. Ann Phys, 1997, 258: 237–285ADSCrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Schulman L S. Continuous and pulsed observations in the quantum Zeno effect. Phys Rev A, 1998, 57: 1509–1515ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    Xu D Z, Ai Q, Sun C P. Dispersive-coupling-based quantum Zeno effect in a cavity-QED system. Phys Rev A, 2011, 83: 022107ADSCrossRefGoogle Scholar
  31. 31.
    Koshino K, Shimizu A. Quantum Zeno effect by general measurements. Phys Rep, 2005, 412: 191–275ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    Ruseckas J. Influence of the detector’s temperature on the quantum Zeno effect. Phys Rev A, 2002, 66: 012105ADSCrossRefGoogle Scholar
  33. 33.
    Ruseckas J. Influence of the finite duration of a measurement on the quantum Zeno effect. Phys Lett A, 2001, 291: 185–189ADSCrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Ruseckas J, Kaulakys B. Real measurements and the quantum Zeno effect. Phys Rev A, 2001, 63: 062103ADSCrossRefGoogle Scholar
  35. 35.
    Ruseckas J, Kaulakys B. General expression for the quantum Zeno and anti-Zeno effects. Phys Rev A, 2004, 69: 032104ADSCrossRefGoogle Scholar
  36. 36.
    Ruseckas J, Kaulakys B. Quantum trajectory method for the quantum Zeno and anti-Zeno effects. Phys Rev A, 2006, 73: 052101ADSCrossRefGoogle Scholar
  37. 37.
    Ai Q, Xu D Z, Yi S, et al. Quantum anti-Zeno effect without wave function reduction. Sci Rep, 2013, 3: 1752ADSGoogle Scholar
  38. 38.
    Peres A. Zeno paradox in quantum theory. Am J Phys, 1980, 48: 931–932ADSCrossRefMathSciNetGoogle Scholar
  39. 39.
    Gordon G, Erez N, Kurizki G. Universal dynamical decoherence control of noisy single- and multi-qubit systems. J Phys B-At Mol Opt Phys, 2007, 40: S75–S93ADSCrossRefMathSciNetGoogle Scholar
  40. 40.
    Gordon G, Bensky G, Klimovsky D G, et al. Cooling down quantum bits on ultrashort time scales. New J Phys, 2009, 11: 123025CrossRefGoogle Scholar
  41. 41.
    Kofman A G, Kurizki G. Universal dynamical control of quantum mechanical decay: Modulation of the coupling to the continuum. Phys Rev Lett, 2001, 87: 270405CrossRefGoogle Scholar
  42. 42.
    Gordon G, Kurizki G, Mancini S, et al. Open-loop stochastic control of quantum coherence. J Phys B-At Mol Opt Phys, 2007, 40: S61–S73ADSCrossRefMathSciNetGoogle Scholar
  43. 43.
    Gordon G. Dynamical decoherence control of multi-partite systems. J Phys B-At Mol Opt Phys, 2009, 42: 223001ADSCrossRefGoogle Scholar
  44. 44.
    Braginsky V, Khalili F Ya. Quantum Measurement. London: Cambridge University Press, 1992CrossRefzbMATHGoogle Scholar
  45. 45.
    Zhang P, Wang Y D, Sun C P. Cooling mechanism for a nanomechanical resonator by periodic coupling to a Cooper pair box. Phys Rev Lett, 2005, 95: 097204ADSCrossRefGoogle Scholar
  46. 46.
    Zheng H, Zhu S Y, Zubairy M S. Quantum Zeno and anti-Zeno effects: Without the rotating-wave approximation. Phys Rev Lett, 2008, 101: 200404ADSCrossRefGoogle Scholar
  47. 47.
    Ai Q, Li Y, Zheng H, et al. Quantum anti-Zeno effect without rotating wave approximation. Phys Rev A, 2010, 81: 042116ADSCrossRefGoogle Scholar
  48. 48.
    Moses H E. Photon wave functions and the exact electromagnetic matrix elements for hydrogenic atoms. Phys Rev A, 1973, 8: 1710–1721ADSCrossRefMathSciNetGoogle Scholar
  49. 49.
    Facchi P, Pascazio S. Temporal behavior and quantum Zeno time of an excited state of the hydrogen atom. Phys Lett A, 1998, 241: 139–144ADSCrossRefGoogle Scholar
  50. 50.
    Breuer H P, Petruccione F. The Theory of Open Quantum System. Oxford: Clarendon Press, 2006Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Peng Zhang
    • 1
  • Qing Ai
    • 2
  • Yong Li
    • 3
  • DaZhi Xu
    • 4
  • ChangPu Sun
    • 3
    • 4
    Email author
  1. 1.Department of PhysicsRenmin University of ChinaBeijingChina
  2. 2.Department of Chemistry and Center for Quantum Science and EngineeringNational Taiwan UniversityTaipei CityTaiwan, China
  3. 3.Beijing Computational Science Research CenterBeijingChina
  4. 4.Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations