Science China Physics, Mechanics and Astronomy

, Volume 57, Issue 2, pp 381–386 | Cite as

A possible resolution of tension between Planck and Type Ia supernova observations

  • ZhengXiang Li
  • PuXun Wu
  • HongWei Yu
  • ZongHong Zhu


There is an apparent tension between cosmological parameters obtained from Planck cosmic microwave background radiation observations and that derived from the observed magnitude-redshift relation for the type Ia supernova (SNe Ia). Here, we show that the tension can be alleviated, if we first calibrate, with the help of the distance-duality relation, the light-curve fitting parameters in the distance estimation in SNe Ia observations with the angular diameter distance data of the galaxy clusters and then re-estimate the distances for the SNe Ia with the corrected fitting parameters. This was used to explore their cosmological implications in the context of the spatially flat cosmology. We find a higher value for the matter density parameter, Ωm, as compared to that from the original SNLS3, which is in agreement with Planck observations at 68.3% confidence. Therefore, the tension between Planck measurements and SNe Ia observations regarding Ωm can be effectively alleviated without invoking new physics or resorting to extensions for the standard concordance model. Moreover, with the absolute magnitude of a fiducial SNe Ia, M, determined first, we obtained a constraint on the Hubble constant with SNLS3 alone, which is also consistent with Planck.


X-rays: galaxies: clusters (cosmology:) distance scale cosmology: miscellaneous 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Planck Collaboration I, Ade P A R, Aghanim N, Armitage-Caplan C, et al. Planck 2013 results. I. Overview of products and scientific results. arXiv: 1303.5062Google Scholar
  2. 2.
    Planck Collaboration XVI, Ade P A R, Aghanim N, Armitage-Caplan C, et al. Planck 2013 results. XVI. Cosmological parameters. arXiv:1303. 1303.5076Google Scholar
  3. 3.
    Riess A G, Macri L, Casertano S, et al. A 3% solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3. Astrophys J, 2011, 730:119–136ADSCrossRefGoogle Scholar
  4. 4.
    Freedman W L, Madore B F, Scowcroft V, et al. Carnegie Hubble Program: A multi-infrared calibration of the Hubble Constant. Astrophys J, 2012, 758:24–33ADSCrossRefGoogle Scholar
  5. 5.
    Conley A, Guy J, Sullivan M, et al. Supernova constraints and systematic uncertainties from the first three years of the Supernova Legacy Survey. Astrophys J Suppl, 2011, 192:1–29ADSCrossRefGoogle Scholar
  6. 6.
    Percival W J, Reid B A, Eisenstein D J, et al. Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample. Mon Not R Astron Soc, 2010, 401:2148–2168ADSCrossRefGoogle Scholar
  7. 7.
    Blake C, Kazin E A, Beutler F, et al. The WiggleZ Dark Energy Survey: mapping the distanceCredshift relation with baryon acoustic oscillations. Mon Not R Astron Soc, 2011, 418:1707–1724ADSCrossRefGoogle Scholar
  8. 8.
    Marra V, Amendola L, Sawicki I, et al. Cosmic variance and the measurement of the local Hubble parameter. Phys Rev Lett, 2013, 110: 241305ADSCrossRefGoogle Scholar
  9. 9.
    Zhang S N, Ma Y Z. Direct measurement of evolving dark energy density and super-accelerating expansion of the universe. arXiv:1303.6124v3Google Scholar
  10. 10.
    Verde L, Protopapas P, Jimenez R. Planck and the local Universe: Quantifying the tension. arXiv: 1306.6766Google Scholar
  11. 11.
    Xia J Q, Li H, Zhang X. Dark energy constraints after Planck. Phys Rev D 2103, 88:063501CrossRefGoogle Scholar
  12. 12.
    Fleury P, Dupuy H, Uzan J-P. Can all cosmological observations be accurately interpreted with a unique geometry? Phys Rev Lett, 2013, 111:091302ADSCrossRefGoogle Scholar
  13. 13.
    Gao Q, Gong Y. On the compatibility of different observational data. arXiv: 1308.5627Google Scholar
  14. 14.
    Marchini A, Salvatelli V. Updated constraints from the Planck experiment on modified gravity. Phys Rev D, 2013, 88:027502ADSCrossRefGoogle Scholar
  15. 15.
    Salvatelli V, Marchini A, Lopez-Honorez L, et al. New constraints on coupled dark energy from Planck. Phys Rev D, 2013, 88:023531ADSCrossRefGoogle Scholar
  16. 16.
    Hubble E. A relation between distance and radial velocity among extragalactic nebulae. Proc Nat Acad Sci, 1929, 15:168–173ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Riess A G, Filippenko A V, Challis P, et al. Observational evidence from supernova for an accelerating universe and a cosmological constant. Astron J, 1998, 116:1009–1038ADSCrossRefGoogle Scholar
  18. 18.
    Perlmutter S, Aldering G, Goldhaber G, et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys J, 1999, 517:565–586ADSCrossRefGoogle Scholar
  19. 19.
    Howell D A. Type Ia Supernovae as stellar endpoints and cosmological tools. Nat Commun, 2011, 2:350ADSCrossRefGoogle Scholar
  20. 20.
    Wood-Vasey W M, Miknaitis G, Stubbs C W, et al. Observational constraints on the nature of dark energy: First cosmological results from the ESSENCE Supernova Survey. Astrophys J, 2007, 666:694–715ADSCrossRefGoogle Scholar
  21. 21.
    Hicken M, Wood-Vasey W M, Blondin S, et al. Improved dark energy constraints from 100 new CfA supernova type Ia light curves. Astrophys J, 2009, 700:1097–1140ADSCrossRefGoogle Scholar
  22. 22.
    Kessler R, Becker A C, Cinabro D, et al. First-year Sloan Digital Sky Survey-II supernova results: Hubble diagram and cosmological parameters. Astrophys J Suppl, 2009, 185:32–84ADSCrossRefGoogle Scholar
  23. 23.
    Suzuki N, Rubin D, Lidman C, et al. The Hubble Space Telescope Clustser Supernova Survey. V. Improving the dark energy constraints above z > 1 and building an early-type-hosted supernova sample. Astrophys J, 2012, 746:85–108ADSCrossRefGoogle Scholar
  24. 24.
    Phillips M M. The absolute magnitudes of type Ia supernovae. Astrophys J, 1993, 413:L105–L108ADSCrossRefGoogle Scholar
  25. 25.
    Riess A G, Press W H, Kirshner R P. Using type Ia supernova light curve shapes to measure the Hubble constant. Astrophys J, 1995, 438:L17–L20ADSCrossRefGoogle Scholar
  26. 26.
    Perlmutter S, Gabi S, Goldhaberet G, et al. Measurements of the cosmological parameters Ω and Λ from the first seven supernovae at z ≥ 0.35. Astrophys J, 1997, 483:565–581ADSCrossRefGoogle Scholar
  27. 27.
    Wang L, Goldhaber G, Aldering G, et al. Multicolor light curves of type Ia supernovae on the color-magnitude diagram: A novel step toward more precise distance and extinction estimates. Astrophys J, 2003, 590:944–970ADSCrossRefGoogle Scholar
  28. 28.
    Wang X, Wang L, Zhou X, et al. A novel color parameter as a luminosity calibrator for type Ia supernovae. Astrophys J, 2005, 620:L87–L90ADSCrossRefGoogle Scholar
  29. 29.
    Riess A G, Press WH, Kirshner R P. A precise distance indicator: Type Ia supernova multicolor light-curve shapes. Astrophys J, 1996, 473:88–109ADSCrossRefGoogle Scholar
  30. 30.
    Tripp R. A two-parameter luminosity correction for Type Ia supernovae. Astron Astrophys, 1998, 331:815–820ADSGoogle Scholar
  31. 31.
    Guy J, Astier P, Nobili S, et al. SALT: A spectral adaptive light curve template for type Ia supernovae. Astron Astrophys, 2005, 443: 781–791ADSCrossRefGoogle Scholar
  32. 32.
    Guy J, Astier P, Baumont S, et al. SALT2: Using distant supernovae to improve the use of type Ia supernovae as distance indicators. Astron Astrophys, 2007, 466:11–21ADSCrossRefGoogle Scholar
  33. 33.
    Conley A, Sullivan M, Hsiao E Y, et al. SiFTO: An empirical method for fitting SN Ia light curves. Astrophys J, 2008, 681:482–498ADSCrossRefGoogle Scholar
  34. 34.
    Sunyaev R A, Zel’dovich Ya B. The observations of relic radiation as a test of the nature of X-ray radiation from the clusters of galaxies. Comments Astrophys Space Phys, 1972, 4:173–178ADSGoogle Scholar
  35. 35.
    De Filippis E, Sereno M, Bautz W, et al. Measuring the threedimensional structure of galaxy clusters. I. Application to a sample of 25 clusters. Astrophys J, 2005, 625:108–120ADSCrossRefGoogle Scholar
  36. 36.
    Etherington I M H. The definition of distance in general relativity. Phil Mag, 1933, 15:761–773ADSGoogle Scholar
  37. 37.
    Etherington I M H. The definition of distance in general relativity. Gen Rel Grav, 2007, 39:1055–1067ADSCrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Ellis G F R. On the definition of distance in general relativity; Etherington I M H. (Philosophical Magazine ser, 7, 15: 761). Gen Rel Grav, 2007, 39:1047–1052ADSCrossRefzbMATHGoogle Scholar
  39. 39.
    Schneider P, Ehlers J, Falco E E. Gravitational Lenses. New York: Springer, 1999Google Scholar
  40. 40.
    Komatsu E, Smith K M, Dunkley J, et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP*) observations: Cosmological interpretation. Astrophys J Suppl, 2011, 192:18–64ADSCrossRefGoogle Scholar
  41. 41.
    Cunha J V, Marassi L, Lima J A S. Constraining H0 from Sunyaev-Zel’dovich effect, Galaxy Clusters X-ray data, and Baryon Oscillations. Mon Not R Astron Soc, 2007, 379:L1–L5ADSCrossRefGoogle Scholar
  42. 42.
    Mantz A, Allen SW, Ebeling H, et al. The observed growth of massive galaxy clusters C II. X-ray scaling relations. Mon Not R Astron Soc, 2010, 406:1773–1795ADSGoogle Scholar
  43. 43.
    Riess A G, Filippenko A V, Li W, et al. The rise time of nearby type Ia supernovae. Astron J, 1999, 118:2675–2688ADSCrossRefGoogle Scholar
  44. 44.
    Hillebrandt W, Niemeyer J C. Type Ia supernova explosion models. Annu Rev Astron Astrophys, 2000, 38:191–230ADSCrossRefGoogle Scholar
  45. 45.
    Jha S, Riess A G, Kirshner R. Improved distances to type Ia supernovae with Multicolor Light-Curve Shapes: MLCS2k2. Astrophys J, 2007, 659:122–148ADSCrossRefGoogle Scholar
  46. 46.
    Haugboelle T, Hannestad S, Thomsenet B, et al. The velocity field of the local universe from measurements of Type Ia supernovae. Astrophys J, 2007, 661:650–659ADSCrossRefGoogle Scholar
  47. 47.
    Conley A, Carlberg R G, Guy J, et al. Is there evidence for a Hubble bubble? The nature of Type Ia supernova colors and dust in external galaxies. Astrophys J, 2007, 664:L13–L16ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • ZhengXiang Li
    • 1
  • PuXun Wu
    • 3
  • HongWei Yu
    • 2
    • 3
  • ZongHong Zhu
    • 1
  1. 1.Department of AstronomyBeijing Normal UniversityBeijingChina
  2. 2.Department of Physics and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of EducationHunan Normal UniversityChangshaChina
  3. 3.Center for Nonlinear Science and Department of PhysicsNingbo UniversityNingboChina

Personalised recommendations