Advertisement

Science China Physics, Mechanics and Astronomy

, Volume 57, Issue 2, pp 280–285 | Cite as

Influence of residual surface stress on the fracture of nanoscale piezoelectric materials with conducting cracks

  • HaiShun Nan
  • BaoLin Wang
Article

Abstract

In this paper, we analyze the stress and electric field intensity factors affected by residual surface stress for conducting cracks in piezoelectric nanomaterials. The problem is reduced to a system of non-linear singular integral equations, whose solution is determined by iteration technique. Numerical results indicate that the residual surface stress can significantly alter the crack tip fields at nanometer length scales. Due to the residual surface stress, the electric field can produce stress around crack tip. This suggests a strong electromechanical coupling crack tip field for nanoscale piezoelectric materials. Such a finding is considerably different from the classical fracture mechanics results. A transit electric field to stress load ratio is identified, for which influences of residual surface stresses vanish. The research is useful for the applications of nanoscale piezoelectric devices.

Keywords

fracture mechanics residual surface stress piezoelectric materials nanomechanics conducting cracks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huang S, Zhang S L, Belytschko T, et al. Mechanics of nanocrack: fracture, dislocation emission, and amorphization. J Mech Phys Solids, 2009, 57: 840–850ADSCrossRefGoogle Scholar
  2. 2.
    Belytschko T, Xiao S P, Schatz G C, et al. Atomistic simulations of nanotube fracture. Phys Rev B, 2002, 65(23): 235430ADSCrossRefGoogle Scholar
  3. 3.
    Ou Z Y, Wang G F, Wang T J. Effect of residual surface tension on the stress concentration around a nanosized spheroidal cavity. Int J Eng Sci, 2008, 46: 475–485CrossRefGoogle Scholar
  4. 4.
    Duan H L, Wang J, Huang Z P, et al. Stress fields of a spheroidal inhomogeneity with an interphase in an infinite medium under remote loadings. Proc R Soc A, 2005, 461: 1055–1080ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Caillier C, Ayari A, Gouttenoire V, et al. Gold contact to individual metallic carbon nanotubes: A sensitive nanosensor for high-pressure. Appl Phys Lett, 2010, 97: 173111ADSCrossRefGoogle Scholar
  6. 6.
    Khaderbad M A, Choi Y, Hiralal P, et al. Electrical actuation and readout in a nanoelectromechanical resonator based on a laterally suspended zinc oxide nanowire. Nanotechnology, 2012, 23: 025501ADSCrossRefGoogle Scholar
  7. 7.
    Yang R, Qin Y, Li C, et al. Characteristics of output voltage and current of integrated nanogenerators. J Mech Phys Solids, 2009, 94: 022905Google Scholar
  8. 8.
    Cuenot S, Fretigny C, Demoustier-Champagne S, et al. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B, 2004, 69: 165410ADSCrossRefGoogle Scholar
  9. 9.
    Jing G Y, Duan H L, Sun X M, et al. Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy. Phys Rev B, 2006, 73(23): 235409ADSCrossRefGoogle Scholar
  10. 10.
    Gurtin M E, Murdoch A I. A continuum theory of elastic material surfaces. Arch Ration Mech Anal, 1975, 57(4): 291–323CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Gurtin M E, Weissmuller J, Larche F. A general theory of curved deformable interfaces in solids at equilibrium. Philos Mag A, 1998, 78(5): 1093–1109ADSCrossRefGoogle Scholar
  12. 12.
    Gurtin M E, Markenscoff X, Thurston R N. Effect of surface stress on the natural frequency of thin crystals. Appl Phys Lett, 1976, 29: 529–530ADSCrossRefGoogle Scholar
  13. 13.
    Wang G F, Feng X Q. Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. Europhys Lett, 2010, 91: 56007ADSCrossRefGoogle Scholar
  14. 14.
    Zhang T Y, Gao C F. Fracture behaviors of piezoelectric materials. Theor Appl Frac Mec, 2004, 41: 339–379CrossRefGoogle Scholar
  15. 15.
    Suo Z, Kuo C M, Barnett D M, et al. Fracture mechanics for piezoelectric ceramics. Eur J Mech Phys Solids, 1992, 40: 739–765ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Cammarata R C. Surface and interface stress effects in thin films. Prog Surf Sci, 1994, 46(1): 1–38ADSCrossRefGoogle Scholar
  17. 17.
    Gibbs J W. The Scientific Papers of J. Willard Gibbs. Vol. 1: Thermodynamics. New York: Longmans and Green, 1906. 1–413Google Scholar
  18. 18.
    Wang G F, Wang T J. Deformation around a nanosized elliptical hole with surface effect. Appl Phys Lett, 2006, 89: 161901ADSCrossRefGoogle Scholar
  19. 19.
    Wang B L, Zhang X H. An electrical field based non-linear model in the fracture of piezoelectric ceramics. Int J Solids Struct, 2004, 41: 4337–4347CrossRefzbMATHGoogle Scholar
  20. 20.
    Knoda N, Erdogan F. The mixed mode crack problem in a nonhomogeneous elastic plane. Eng Fract Mech, 1994, 47: 533–545CrossRefGoogle Scholar
  21. 21.
    Erdogan F, Gupta G D. On the numerical solution of singular integral equations. Q Appl Math, 1972, 29: 525–534zbMATHMathSciNetGoogle Scholar
  22. 22.
    Muskhelishvili I N. Single Integral Equations. Groningen: Noordhoff, 1953. 1–447Google Scholar
  23. 23.
    Fulton C C, Gao H J. Electrical nonlinearity in fracture of piezoelectric ceramics. Appl Mech Rev, 1997, 50: S56–S63ADSCrossRefGoogle Scholar
  24. 24.
    Guitin M E, Murdoch A I. Surface stress in solids. Int J Solids Struct, 1978, 14: 431–440CrossRefGoogle Scholar
  25. 25.
    Wang B L, Noda N. Mixed mode crack initiation in piezoelectric ceramic strip. Theor Appl Fract Mech, 2000, 34: 35–47CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Graduate School at ShenzhenHarbin Institute of TechnologyHarbinChina

Personalised recommendations