Modeling of rotational supercavitating evaporator and the geometrical characteristics of supercavity within



In this paper, a rotational supercavitating evaporator (RSCE) was at first modeled by means of theoretical analysis approach. The geometrical characteristics of supercavity in the modeled RSCE were then studied through numerical simulations. The current research objectives consist in determination of shape of the supercavitator (which in the plane of rotation generates supercavity occupying the most volume between blades), and location of the area suitable for steam extraction by revealing the inner structure of supercavity. Analytical analysis was performed by solving empirical equations for the shape of RSCE, through which an evaluation of two-dimensional relative position of supercavity trailing edge for different shapes of the supercavitator has been realized. Numerical simulation was then carried out, by numerically solving the unsteady Navier-Stokes equations in their conservation form coupled with the Rayleigh-Plesset cavitation and Shear-Stress Transport turbulence models, for verification of the results obtained from empirical equations. Despite unreliable assumption of applicability of empirical equations we have confirmed similarity of the supercavity shapes obtained by both methods for the same RSCE. Therefore, the shape of supercavitator calculated by using empirical equations is acceptable, which provides a simple but reliable approach for design of RSCE. The inner structure of supercavity obtained by numerical simulation has indicated position and parameters for steam extraction openings for further numerical and experimental studies on the performance of RSCE. Practical application of steam or gas extraction is suggested for solving of some problems associated with cavitating pumping of cryogenic liquid.


supercavitation rotational supercavitating evaporator geometrical characteristics theoretical analysis computational fluid dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pierce C. Erosion. Berlin: Springer-Verlag, 1982. 464Google Scholar
  2. 2.
    Ivchenko V M. Cavitation Technology. Krasnoyarsk: Krasnoyarsk University Press, 1990. 200Google Scholar
  3. 3.
    Xiao C, Heyes D M. Cavitation in stretched liquids. Proc R SocLond A, 2002, 458: 889–910. doi: 10.1098/rspa.2001.0897ADSCrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Artyushkov L S. Marine Propulsion. Leningrad: Shipbuilding, 1988. 296Google Scholar
  5. 5.
    Pozdunin V L. On the working of supercavitating screw propellers (in Russian). Doklady AN SSSR, 1944, XXXIX: 334–339Google Scholar
  6. 6.
    Birkhoff G, Zarantonello E H. Jets, Wakes, and Cavities. New York: Academic Press, 1957MATHGoogle Scholar
  7. 7.
    Alekseenko S. Introduction to the Theory of Concentrated Vortices. Moscow: Moscow-Izhevsk, 2005. 504Google Scholar
  8. 8.
    Pernik A D. Cavitation in Pumps (in Russian). Leningrad: Sudostroenie, 1966. 439Google Scholar
  9. 9.
    Nesteruk I. Supercavitation: Advances and Perspectives. Ukraine: Institute of Hydromechanics, 2012. 230CrossRefGoogle Scholar
  10. 10.
    Tulin M P. Fifty years of supercavitating flow research in the United States: Personal recollection. Int J Fluid Mech Rec, 2001, 28: 692–701Google Scholar
  11. 11.
    Street R L. A linearized theory for rotational supercavitating flow. J Fluid Mech, 1963, 17: 513–545. doi: 10.1017/S002211206300149XADSCrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Street R L. Symmetric, rotational, supercavitating flow about a slender wedge (Drag coefficient and cavity length in symmetric rotational supercavitating flow around slender wedge). J Basic Eng, 1964, 86: 569–576. doi: 10.1115/1.3653175CrossRefGoogle Scholar
  13. 13.
    Ivchenko V M. Hydrodynamic theory of supercavitating pumps or hydroturbines. Fluid Dyn, 1976, 11: 153–158Google Scholar
  14. 14.
    Miloh T. Mathematical Approaches in Hydrodynamics. Philadelphia, Pennsylvania, USA: SIAM, 1991. 499MATHGoogle Scholar
  15. 15.
    Vasin A D. Slender axisymmetric cavities in a supersonic flow. Fluid Dyn, 1989, 24: 153–155. doi: 10.1007/BF01051496ADSCrossRefGoogle Scholar
  16. 16.
    Ho HT. The Linearized Theory of a Supercavitating Hydrofoil with a Jet Flap. J Basic Eng, 1964, 86: 851–860CrossRefGoogle Scholar
  17. 17.
    Nesteruk I G. Determination of the form of a thin axisymmetric cavity on the basis of an integrodifferential equation. Fluid Dyn, 1985, 10: 83–90Google Scholar
  18. 18.
    Kinnas S A. Supercavitating 3-D Hydrofoils and Propellers: Prediction of Performance and Design. Defense Technical Information Center Compilation Part Notice ADP012091. 2001Google Scholar
  19. 19.
    Achkinadze A S. Supercavitating Propellers. Defense Technical Information Center Compilation Part Notice ADP012090. 2001Google Scholar
  20. 20.
    Fine N E. Nonlinear analysis of cavitating propellers in nonuniform flow.Dissertation for the Doctoral Degree. USA: Massachusetts Institute of Technology, 1992, 174Google Scholar
  21. 21.
    Sisto F. Linearized theory of nonstationary cascades at fully stalled or supercavitated conditions. J Appl Math Mech, 1967, 47: 531–542. doi: 10.1002/zamm.19670470806MATHGoogle Scholar
  22. 22.
    Antipov Y A, Silvestrov V V. Double cavity flow past a wedge. Proc R Soc A, 2008, 464: 3021–3038. doi: 10.1098/rspa.2008.0136ADSCrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Serebryakov V, Kirschner I, Schnerr G. High Speed Motion in Water with Supercavitation for Sub-, Trans-, Supersonic Mach Numbers. In: CAV2009, 7th International Symposium on Cavitation.USA, 2009. 18Google Scholar
  24. 24.
    Faltinsen O M. Review of hydrodynamics of high-speed marine vehicles. J Waterw Port Coastal Ocean Eng, 2006, 132: 2, doi: 10.1061/(ASCE)0733-950X(2006)132:5(427)Google Scholar
  25. 25.
    Savchenko Y N. Supercavitation-Problems and Perspectives. In: CAV 2001: Fourth International Symposium on Cavitation. USA, 2001, Scholar
  26. 26.
    Hoffmann K A. Computational Fluid Dynamics for Engineers. Austin: A Publication of Engineering Education System, 1989Google Scholar
  27. 27.
    Roache P J. Fundamentals of Computational Fluid Dynamics. NM: Hrmosa Publishers, 1998Google Scholar
  28. 28.
    Wilcox D C. Turbulence Modeling for CFD. 3rd ed. Dcw Industries Inc, 2006Google Scholar
  29. 29.
    Kirschner I, Chamberlin R, Arzoumanian S. A Simple Approach to Estimating Three-Dimensional Supercavitating Flow Fields.In: Proceeding of the 7th International Symposium on Cavitation CAV 2009, Ann Arbor, the USA, 2009Google Scholar
  30. 30.
    Young Y L, Kinnas S A. Numerical modeling of supercavitating propeller flows. JSh Res, 2003, 47: 48–62Google Scholar
  31. 31.
    Young Y L, Kinnas S A. Analysis of supercavitating and surface-piercing propeller flows via BEM. ComputMech, 2003, 32: 269–280. doi: 10.1007/s00466-003-0484-6MATHGoogle Scholar
  32. 32.
    Young Y L, Kinnas S A. Fluid and structural modeling of cavitating propeller flows. In: 5th International Symposium on Cavitation (CAV2003), Osaka, the Japan, 2003Google Scholar
  33. 33.
    Pereira F, Salvatore F, Di Felice F. Measurement and modeling of propeller cavitation in uniform inflow. J Fluids Eng, 2004, 126: 671–680CrossRefGoogle Scholar
  34. 34.
    White E R, Miller T F. A serendipitous application of supercavitation theory to the water-running basilisk lizard. J Fluids Eng, 2010, 132: 054501. doi: 10.1115/1.4001487CrossRefGoogle Scholar
  35. 35.
    Kunz R F, Lindau J W, Billet M L, et al. Multiphase CFD modeling of developed and supercavitating flows. In: Van den Braembussche, eds. VKI Special Course on Supercavitating Flows, Brussels, 2001, RTO-EN-010-13Google Scholar
  36. 36.
    Motley M R, Liu Z, Young Y L. Utilizing fluid-structure interactions to improve energy efficiency of composite marine propellers in spatially varying wake. Compos Struct, 2009, 90: 304–313CrossRefGoogle Scholar
  37. 37.
    Pereira F, Salvatore F, Di Felice F. Recent developments on marine propeller cavitation investigations at INSEAN. Jahrbuch der SchiffbautechnischenGesellschaft, 2003, 97: 25–43Google Scholar
  38. 38.
    D’Epagnier K P. AUV Propellers: Optimal Design and Improving Existing Propellers for Greater Efficiency. OCEANS 2006, Boston, the USA, 2006Google Scholar
  39. 39.
    Cameron P J K, Rogers P H, Doane J W, et al. An experiment for the study of free-flying supercavitating projectiles. J Fluids Eng, 2011, 133: 021303. doi: 10.1115/1.4003560CrossRefGoogle Scholar
  40. 40.
    Chen Y, Chuanjing L, Chen X. Quadratic and cubic eddy-viscosity models in turbulent supercavitating flow computation. Theor Appl Mech Lett, 2011, 1: 032006. doi: 10.1063/2.1103206CrossRefGoogle Scholar
  41. 41.
    Shi H, Itoh M. High-speed Photography of Supercavitation and Multiphase Flows in Water Entry. In: CAV2009, 7th International Symposium on Cavitation, 2009, Ann Arbor, the USA.
  42. 42.
    Machinski A S. Hydrodymanics and thermal transfer characteristics of supercavitating evaporators for water desalination (in Russian). Dissertation for the Doctoral Degree. Moscow: Kiev Order of Lenin Polytechnic Institute after 50 years of Great October Socialist Revolution, 1984. 285Google Scholar
  43. 43.
    Franc JP, Michel JM. Fundamentals of Cavitation. Fluid Mechanics and Its Application.Kluwer Academic Publishers, 2005. 293Google Scholar
  44. 44.
    Knepp R, Daily J, Hemmit F. Cavitation (in Russian). Moscow: Mir, 1974. 678Google Scholar
  45. 45.
    Egorovet I T. Artificial Cavitation. Joint Publications Research Service, 1971. 362Google Scholar
  46. 46.
    Shah Y T. Cavitation Reaction Engineering. In: Shah Y T, PanditA B, Moholkar V S. New York: Plenum Chemical Engineering, 1999. 349Google Scholar
  47. 47.
    Oledal M, Cavitation in Complex Separated Flows. Dissertation for the Doctoral Degree. Trondheim: Norwegian University of Science and Technology, 2002. 133Google Scholar
  48. 48.
    Brennen C E. Fluid Dynamics of Cavitation and Cavitating Turbopumps. CISM Courses and Lectures, 2007. 496Google Scholar
  49. 49.
    Brujan EA. Cavitation in Non-Newtonian Fluids: With Biomedical and Bioengineering Applications. University Politechnica of Bucharest, Department of Hydraulics: Springer, 2011. 265CrossRefGoogle Scholar
  50. 50.
    Stinebring D R, Billet M L, Lindau J W, et al. Developed cavitation — cavity dynamics. RTO AVT Lecture series on supercavitating flows, brussels, 2001, RTO-EN-010: 67-96Google Scholar
  51. 51.
    Biskoup B A, Russetsky A, Sadovnikov Y M. Survey of the Krylov Institute Research Works in the Area of Shipbuilding Problems Concerning Propulsor Cavitation. In: Propcav’95, Intl Conf on Propeller Cavitation Research, Newcastle upon Tyne, the UK, 1995. 103–112Google Scholar
  52. 52.
    Takahashi H, Kadoi H. Comparison of Cavitation Phenomena Between the Actual and Model Propellers, and Erosion Survey on the Actual Propeller. In: Proceedings of the 14th International Towing Tank Conference, Ottawa, the Canada, September, 1975Google Scholar
  53. 53.
    Michel JM. Introduction to Cavitation, Supercavitation. RTO AVT/VKI special course: supercavitating flows.von Karman Institute for Fluid Dynamics, RhodeSaintGenèse, Belgium, 2001Google Scholar
  54. 54.
    Tulin M P. Supercavitation: An Overview.RTO AVT/VKI Special Course on Supercavitating Flows.von Karman Institute for Fluid Dynamics, Rhode Saint Genèse, Belgium, 2001Google Scholar
  55. 55.
    Fridman G M, Achkinadze A S. Review of Theoretical Approaches to Nonlinear Supercavitating Flows(in Russian). Saint Petersburg State Marine Technical University, 2001Google Scholar
  56. 56.
    Streeter V L. Handbook of Fluid Dynamics. London: McGraw-Hill, 1961. 621Google Scholar
  57. 57.
    Zhang X B, Qiu L M, Gao Y, et al. Computational fluid dynamic study on cavitation in liquid nitrogen. Cryogenics, 2008, 48: 432–438ADSCrossRefGoogle Scholar
  58. 58.
    Grazia D G M, Daniela B, Antonio F. Analysis of thermal effects in a cavitating orifice using Rayleigh equation and experiments. J Eng Gas Turbines Power, 2010, 132: 092901. doi: 10.1115/1.4000367CrossRefGoogle Scholar
  59. 59.
    Hosangadi A, Ahuja V. Numerical study of cavitation in cryogenic fluids. J Fluids Eng, 2004, 127: 267–281. doi: 10.1115/1.1883238CrossRefGoogle Scholar
  60. 60.
    James L C. Liquid Propulsion: Propellant Feed System Design. New York: John Wiley & Sons, 2010Google Scholar
  61. 61.
    Zhmakin A I. Fundamentals of Cryobiology: Physical Phenomena and Mathematical Models. Berlin: Springer, 2009. 277CrossRefGoogle Scholar
  62. 62.
    Zarchan P. Liquid Rocket Thrust Chambers: Aspects of Modeling, Analysis, and Design. Prog Astronaut Aeronaut, 2004. 725Google Scholar
  63. 63.
    Yoshiki Y, Kengo K, Satoshi H. Thermodynamic effect on a cavitating inducer in liquid nitrogen. J Fluids Eng, 2007, 129: 273–278. doi: 10.1115/1.2427076CrossRefGoogle Scholar
  64. 64.
    Naoki T, Toshio N. Cryogenic cavitating flow in 2D laval nozzle. J Therm Sci, 2003, 12: 157–161. doi: 10.1007/s11630-003-0058-0CrossRefGoogle Scholar
  65. 65.
    Tokumasu T, Sekino Y, Kamijo K. The numerical analysis of the effect of flow properties on the thermodynamic effect of cavitation. Jpn Soc Aeronaut SpSci, 2004, 47: 146–152. doi: 10.2322/tjsass.47.146CrossRefGoogle Scholar
  66. 66.
    Baidakov V G. Explosive Boiling of Superheated Cryogenic Liquid. WILEY-VCH Verlag GmbH & Co. KGaA, 2007. 337Google Scholar
  67. 67.
    Yoshiki Y, Yoshifumi S, Mitsuo W. Thermodynamic effect on rotating cavitation in an inducer. J Fluids Eng, 2009, 131: 091302. doi: 10.1115/1.3192135CrossRefGoogle Scholar
  68. 68.
    Kuklinski R, Castano J, Henoch C. Experimental Study of Ventilated Cavities on Dynamic Test Model. In: CAV 2001: Fourth International Symposium on Cavitation. USA, 2001Google Scholar
  69. 69.
    Kawakami E, Arndt R E A. Investigation of the behavior of ventilated supercavities. J Fluids Eng, 2011, 133: 091305. doi: 10.1115/1.4004911CrossRefGoogle Scholar
  70. 70.
    Amromin E, Karafiath G, Metcalf B. Ship drag reduction by air bottom Ventilated cavitation in calm water and in waves. J Sh Res, 2011, 55: 196–207Google Scholar
  71. 71.
    Matveev K I, Miller M J. Air cavity with variable length under a model hull. J EngMarit Environ, 2011, 225: 161–169. doi: 10.1177/1475090211398822Google Scholar
  72. 72.
    Arndt R E A, Balas G J, Wosnik M. Control of cavitating flows: a perspective. JSME Int J, 2005, 48: 334–341ADSCrossRefGoogle Scholar
  73. 73.
    Vanek B, Bokor J, Balas G J, et al. Longitudinal motion control of a high-speed supercavitation vehicle. J Vib Control, 2007, 13: 159–184. doi: 10.1177/1077546307070226CrossRefMATHGoogle Scholar
  74. 74.
    Ruzzene V, Kamada R, Bottasso C L, et al. Trajectory optimization strategies for supercavitatingunderwatervehicles. J Vib Control, 2008, 14: 611–644. doi: 10.1177/1077546307076899CrossRefMATHGoogle Scholar
  75. 75.
    Califano A, Steen S. Identification of ventilation regimes of a marine propeller by means of dynamic-loads analysis. Ocean Eng, 2011, 38: 1600–1610CrossRefGoogle Scholar
  76. 76.
    Califano A, Steen S. Numerical simulations of a fully submerged propeller subject to ventilation. Ocean Eng, 2011, 38: 1582–1599CrossRefGoogle Scholar
  77. 77.
    Kinnas S A, Young Y L. Modeling of cavitating or ventilated flows using BEM. Int J Numer Methods Heat Fluid Flow, 2003, 13: 672–697CrossRefMATHGoogle Scholar
  78. 78.
    Xiang M, Lin M D, Zhang W H, et al. On the numerical study of ventilated cavitatingflowbased on two-fluid model. Trans Beijing Inst Technol, 2011, 31: 768–771Google Scholar
  79. 79.
    Guzevsky V A. Research of Supercavitating Flows (in Russian). Krasnoyarsk Polytechnic Institute, 1988Google Scholar
  80. 80.
    Farhat M, Chakravarty A, Field J E. Luminescence from hydrodynamic cavitation. Proc R Soc A, 2011, 467: 591–606. doi: 10.1098/rspa.2010.0134ADSCrossRefGoogle Scholar
  81. 81.
    Versteeg H K, Malalasekera W. An Introduction to Computational Fluid Dynamics, the Finite Volume Method. Edinburgh: Pearson Education Limited, 1995Google Scholar
  82. 82.
    Shaw C T. Using Computational Fluid Dynamics. New Jersey: Prentice Hall, 1992MATHGoogle Scholar
  83. 83.
    Patankar S V. Numerical Heat Transfer and Fluid Flow. Washington: Hemisphere Publishing Corporation, 1980MATHGoogle Scholar
  84. 84.
    Massey B. Mechanics of Fluids. London: Taylor & Francis, 2006Google Scholar
  85. 85.
    White F M. Viscous Fluid Flow. New York: McGraw Hill, 2005Google Scholar
  86. 86.
    Green D W, Perry R H. Perry’s Chemical Engineer’s Handbook. 8th ed. New York: McGraw Hill, 2008Google Scholar
  87. 87.
    Van Dyke M. An Album of Fluid Motion. Stanford: Parabolic Press, 1982Google Scholar
  88. 88.
    Redlich O, Kwong J N S. On the thermodynamics of solutions. V. An equation of state; fugacities of gaseous solutions. Chem Rev, 1949, 44: 233–244, doi: 10.1021/cr60137a013CrossRefGoogle Scholar
  89. 89.
    Peng D Y, Robinson D B. A new two-constant equation of state. Ind Eng Chem Fundam, 1976, 15: 59–64CrossRefMATHGoogle Scholar
  90. 90.
    Aungier R H. A fast, accurate real gas equation of state for fluid dynamic analysis applications. J Fluids Eng, 1995, 117: 277–281CrossRefGoogle Scholar
  91. 91.
    Grigull U, Schmidt E. Properties of Water and Steam in SI-Units, 4th Revised and Updated Printing. Berlin: Springer, 1981CrossRefGoogle Scholar
  92. 92.
    Wagner W. The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. ASME J Eng Gas Turbines Power, 2000, 122: 150–182CrossRefGoogle Scholar
  93. 93.
    Wagner W. ASME Steam Tables and Properties of Water and Steam. Berlin: Springer, 1998Google Scholar
  94. 94.
    Bakir F, Rey R, Gerber A G, et al. Numerical and experimental investigations of the cavitatingbehavior of an inducer. Int J Rotating Machinery, 2004, 10: 15–25Google Scholar
  95. 95.
    Spalart P R, Shur M. On the sensitization of turbulence models to rotation and curvature. Aerospace Sci Technol, 1997, 1: 297–302CrossRefMATHGoogle Scholar
  96. 96.
    Smirnov P E, Menter F R. Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term. ASME Paper GT 2008-50480, Germany, 2008Google Scholar
  97. 97.
    Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAAJ, 1994, 32: 1598–1605ADSCrossRefGoogle Scholar
  98. 98.
    Launder B E, Spalding D B. The numerical computation of turbulent flow. Comput Math Appl Mech Eng, 1974, 3: 269–289CrossRefMATHGoogle Scholar
  99. 99.
    Grotjans H, Menter F R. Wall Functions for General Application CFD Code. In: Papailiou K D, ECCOMAS 98 Proceedings of the Fourth European Computational Fluid Dynamics Conference. Athens: John Wiley & Sons, 1998. 1112–1117Google Scholar
  100. 100.
    Henkes R A W M, van der Flugt F F, Hoogendoorn C J. Natural convection flow in a square cavity calculated with low-Reynolds-number turbulence models. Int J Heat Mass Transfer, 1991, 34: 1543–1557CrossRefGoogle Scholar
  101. 101.
    Apsley D D, Leschziner M A. A new low-Reynolds-number nonlinear two-equation turbulence model for complex flows. Int J Heat Fluid Flow, 1998, 19: 209–222CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Complex Flow and Heat Transfer Laboratory, School of Energy Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations