Science China Physics, Mechanics and Astronomy

, Volume 56, Issue 6, pp 1220–1226 | Cite as

Constraining the lattice fluid dark energy from SNe Ia, BAO and OHD

Article

Abstract

Sanchez and Lacombe have developed a lattice fluid theory based on a well-defined statistical mechanical model. Taking the lattice fluid as a candidate of dark energy, we investigate the cosmic evolution of this fluid. Using the combined observational data of Type Ia Supernova (SNe Ia) Union2.1, Baryon Acoustic Oscillations (BAO) data from 6dFGS, SDSS and WiggleZ survey, and Observational Hubble Data (OHD), we find the best fit value of the parameters: A = −0.3 ± 0.2(1σ) ± 0.4(2σ) ± 0.8(3σ) and Ω m = 0.31 ± 0.02(1σ) ± 0.05(2σ) ± 0.07(3σ). The cosmological implications of the model are presented.

Keywords

dark energy lattice fluid statefinder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Riess A G, Filippenko A V, Challis P, et al. Observational evidence from Supernovae for an accelerating universe and a cosmological constant. Astron J, 1998, 116: 1009–1038ADSCrossRefGoogle Scholar
  2. 2.
    Perlmutter S, Aldering G, Goldhaber G, et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys J, 1999, 517: 565–586ADSCrossRefGoogle Scholar
  3. 3.
    Hicken M, Wood-Vasey W M, Blondin S, et al. Improved dark energy constraints from 100 new CfA Supernova Type Ia light curves. Astrophys J, 2009, 700: 1097–1140ADSCrossRefGoogle Scholar
  4. 4.
    Kowalski M, Rubin D, Aldering G, et al. Improved cosmological constraints from new, old and combined Supernova Datasets. Astrophys J, 2008, 686: 749–778ADSCrossRefGoogle Scholar
  5. 5.
    Amanullah R, Lidman C, Rubin D, et al. Spectra and Hubble Space Telescope light curves of six Type Ia Supernovae at 0.511 < z < 1.12 and the Union2 compilation. Astrophys J, 2010, 716: 712–738ADSCrossRefGoogle Scholar
  6. 6.
    Spergel D N, Bean R, Doré O, et al. Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications for cosmology. Astrophys J Suppl, 2007, 170: 377–408ADSCrossRefGoogle Scholar
  7. 7.
    Komatsu E, Dunkley J, Nolta M R, et al. Five-year Wilkinson Microwave Anisotropy Probe observations: Cosmological interpretation. Astrophys J Suppl, 2009, 180: 330–376ADSCrossRefGoogle Scholar
  8. 8.
    Komatsu E, Smith K M, Dunkley J, et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological interpretation. Astrophys J Suppl, 2011, 192: 18ADSCrossRefGoogle Scholar
  9. 9.
    Eisenstein D J, Zehavi I, Hogg D W, et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys J, 2005, 633: 560–574ADSCrossRefGoogle Scholar
  10. 10.
    Percival W J, Cole S, Eisenstein D J, et al. Measuring the Baryon Acoustic Oscillation scale using the sloan digital sky survey and 2 dF galaxy redshift survey. Mon Not R Astron Soc, 2007, 381: 1053–1066ADSCrossRefGoogle Scholar
  11. 11.
    Reid B A, Percival W J, Eisenstein D J. Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 Luminous Red Galaxies. Mon Not R Astron Soc, 2010, 404: 60–85ADSCrossRefGoogle Scholar
  12. 12.
    Jimenez R, Loeb A. Constraining cosmological parameters based on relative galaxy ages. Astrophys J, 2002, 573: 37–42ADSCrossRefGoogle Scholar
  13. 13.
    Wetterich C. Cosmology and the fate of dilatation symmetry. Nucl Phys B, 1988, 302: 668–696ADSCrossRefGoogle Scholar
  14. 14.
    Ratra B, Peebles P J E. Cosmological consequences of a rolling homogeneous scalar field. Phys Rev D, 1988, 37: 3406–3427ADSCrossRefGoogle Scholar
  15. 15.
    Fujii Y. Origin of the gravitational constant and particle masses in a scale-invariant scalar-tensor theory. Phys Rev D, 1982, 26: 2580–2588MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Ford L H. Cosmological-constant damping by unstable scalar fields. Phys Rev D, 1987, 35: 2339–2344ADSCrossRefGoogle Scholar
  17. 17.
    Fujii Y, Nishioka T. Model of a decaying cosmological constant. Phys Rev D, 1990, 42: 361–370ADSCrossRefGoogle Scholar
  18. 18.
    Chiba T, Sugiyama N, Nakamura T. Cosmology with x-matter. Mon Not R Astron Soc, 1997, 289: L5–L9ADSCrossRefGoogle Scholar
  19. 19.
    Carroll S M. Quintessence and the rest of the world: Suppressing long-range interactions. Phys Rev Lett, 1998, 81: 3067–3070ADSCrossRefGoogle Scholar
  20. 20.
    Caldwell R R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys Lett B, 2002, 545: 23–29ADSCrossRefGoogle Scholar
  21. 21.
    Chiba T, Okabe T, Yamaguchi M. Kinetically driven quintessence. Phys Rev D, 2000, 62: 023511ADSCrossRefGoogle Scholar
  22. 22.
    Armendariz-Picon C, Mukhanov V, Steinhardt P J. Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration. Phys Rev Lett, 2000, 85: 4438–4441ADSCrossRefGoogle Scholar
  23. 23.
    Armendariz-Picon C, Mukhanov V, Steinhardt P J. Essentials of kessence. Phys Rev D, 2001, 63: 103510ADSCrossRefGoogle Scholar
  24. 24.
    Padmanabhan T. Accelerated expansion of the universe driven by tachyonic matter. Phys Rev D, 2002, 66: 021301ADSCrossRefGoogle Scholar
  25. 25.
    Padmanabhan T, Choudhury T R. Can the clustered dark matter and the smooth dark energy arise from the same scalar field? Phys Rev D, 2002, 66: 081301ADSCrossRefGoogle Scholar
  26. 26.
    Feng B, Wang X L, Zhang X M. Dark energy constraints from the cosmic age and supernova. Phys Lett B, 2005, 607: 35–41ADSCrossRefGoogle Scholar
  27. 27.
    Chimento L P, Forte M, Lazkoz R, et al. Internal space structure generalization of the quintom cosmological scenario. Phys Rev D, 2009, 79: 043502ADSCrossRefGoogle Scholar
  28. 28.
    Capozziello S, Carloni S, Troisi A. Quintessence without scalar fields. Rec Res Dev Astron Astrophys, 2003, 1: 625Google Scholar
  29. 29.
    Capozziello S. Curvature quintessence. Int J Mod Phys D, 2002, 11: 483–491MathSciNetADSMATHCrossRefGoogle Scholar
  30. 30.
    Capozziello S, Cardone V F, Carloni S, et al. Curvature quintessence matched with observational data. Int J Mod Phys D, 2003, 12: 1969–1982ADSCrossRefGoogle Scholar
  31. 31.
    Carroll S M, Duvvuri V, Trodden M, et al. Is cosmic speed-up due to new gravitational physics? Phys Rev D, 2004, 70: 043528ADSCrossRefGoogle Scholar
  32. 32.
    Nojiri S, Odintsov S D. Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration. Phys Rev D, 2003, 68: 123512MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Nojiri S, Odintsov S D. Introduction to modified gravity and gravitational alternative for dark energy. Int J Geom Meth Mod Phys, 2007, 4: 115–145MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Nojiri S, Odintsov S D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys Rep, 2011, 505: 59–144MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Dvali G R, Gabadadze G, Porrati M. 4D gravity on a brane in 5D Minkowski space. Phys Lett B, 2000, 485: 208–214MathSciNetADSMATHCrossRefGoogle Scholar
  36. 36.
    Li M. A model of holographic dark energy. Phys Lett B, 2004, 603: 1–5ADSCrossRefGoogle Scholar
  37. 37.
    Cohen A G, Kaplan D B, Nelson A E. Effective field theory, black holes, and the cosmological constant. Phys Rev Lett, 1999, 82: 4971–4974MathSciNetADSMATHCrossRefGoogle Scholar
  38. 38.
    Horava P, Minic D. Probable values of the cosmological constant in a holographic theory. Phys Rev Lett, 2000, 85: 1610–1613MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Thomas S. Holography stabilizes the vacuum energy. Phys Rev Lett, 2002, 89: 081301MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Nojiri S, Odintsov S D. Unifying phantom inflation with late-time acceleration: scalar phantom-non-phantom transition model and generalized holographic dark energy. Gen Rel Grav, 2006, 38: 1285–1304MathSciNetADSMATHCrossRefGoogle Scholar
  41. 41.
    Zhang X, Wu F Q. Constraints on holographic dark energy from type Ia supernova observations. Phys Rev D, 2005, 72: 043524ADSCrossRefGoogle Scholar
  42. 42.
    Chang Z, Wu F Q, Zhang X. Constraints on holographic dark energy from X-ray gas mass fraction of galaxy clusters. Phys Lett B, 2006, 633: 14–18ADSCrossRefGoogle Scholar
  43. 43.
    Zhang J, Zhang X, Liu H. Holographic tachyon model. Phys Lett B, 2007, 651: 84–88MathSciNetADSMATHCrossRefGoogle Scholar
  44. 44.
    Ma Y, Zhang X. Possible theoretical limits on holographic quintessence from weak gravity conjecture. Phys Lett B, 2008, 661: 239–245ADSCrossRefGoogle Scholar
  45. 45.
    Xu L, Li W, Lu J. Cosmic constraint on Ricci dark energy model. Mod Phys Lett A, 2009, 24: 1355–1360ADSMATHCrossRefGoogle Scholar
  46. 46.
    Feng C J. Statefinder diagnosis for Ricci dark energy. Phys Lett B, 2008, 670: 231–234ADSCrossRefGoogle Scholar
  47. 47.
    Granda L N, Oliveros A. Infrared cut-off proposal for the holographic density. Phys Lett B, 2008, 669: 275–277ADSCrossRefGoogle Scholar
  48. 48.
    Huang Q G, Li M. The holographic dark energy in a non-flat universe. JCAP, 2004, 08: 013ADSCrossRefGoogle Scholar
  49. 49.
    Gong Y G, Wang B, Zhang Y Z. Holographic dark energy reexamined. Phys Rev D, 2005, 72: 043510ADSCrossRefGoogle Scholar
  50. 50.
    Wang B, Gong Y G, Abdalla E. Transition of the dark energy equation of state in an interacting holographic dark energy model. Phys Lett B, 2005, 624: 141–146ADSCrossRefGoogle Scholar
  51. 51.
    Chen B, Li M, Wang Y. Inflation with holographic dark energy. Nucl Phys B, 2007, 774: 256–267MathSciNetADSMATHCrossRefGoogle Scholar
  52. 52.
    Neupane I P. Remarks on dynamical dark energy measured by the con formal age of the universe. Phys Rev D, 2007, 76: 123006ADSCrossRefGoogle Scholar
  53. 53.
    Wu J P, Ma D Z, Ling Y. Quintessence reconstruction of the new agegraphic dark energy model. Phys Lett B, 2008, 663: 152–159ADSCrossRefGoogle Scholar
  54. 54.
    Wei H, Cai R G. Interacting agegraphic dark energy. Eur Phys J C, 2009, 59: 99–105ADSCrossRefGoogle Scholar
  55. 55.
    Yi Z, Zhang T. Constraints on holographic dark energy models using the differential ages of passively evolving galaxies. Mod Phys Lett A, 2007, 22: 41–53ADSCrossRefGoogle Scholar
  56. 56.
    Saridakis E N. Restoring holographic dark energy in brane cosmology. Phys Lett B, 2008, 660: 138–143MathSciNetADSCrossRefGoogle Scholar
  57. 57.
    Saridakis E N. Holographic dark energy in braneworld models with moving branes and the w = −1 crossing. JCAP, 2008, 04: 020ADSCrossRefGoogle Scholar
  58. 58.
    Saridakis E N. Holographic dark energy in braneworld models with a Gauss-Bonnet term in the bulk. Interacting behavior and the w = −1 crossing. Phys Lett B, 2008, 661: 335–341MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    Chimento L P, Richarte M G. Interacting dark matter and modified holographic Ricci dark energy induce a relaxed Chaplygin gas. Phys Rev D, 2011, 84: 123507ADSCrossRefGoogle Scholar
  60. 60.
    Wei H, Cai R G. A new model of agegraphic dark energy. Phys Lett B, 2008, 660: 113–117ADSCrossRefGoogle Scholar
  61. 61.
    Cai R G. A dark energy model characterized by the age of the Universe. Phys Lett B, 2007, 657: 228–231MathSciNetADSMATHCrossRefGoogle Scholar
  62. 62.
    Zhai Z, Zhang T, Liu W. Constraints on Λ(t) CDM models as holographic and agegraphic dark energy with the observational Hubble parameter data. JCAP, 2011, 8: 019ADSCrossRefGoogle Scholar
  63. 63.
    Zhang T, Ma C, Lan T. Constraints on the dark side of the universe and observational Hubble parameter data. Adv Astron, 2010, 2010: 184284ADSCrossRefGoogle Scholar
  64. 64.
    Kamenshchik A Y, Moschella U, Pasquier V. An alternative to quintessence. Phys Lett B, 2011, 511: 265–268ADSGoogle Scholar
  65. 65.
    Bento M C, Bertolami O, Sen A A. Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys Rev D, 2002, 66: 043507ADSCrossRefGoogle Scholar
  66. 66.
    Dev A, Alcaniz J S, Jain D. Cosmological consequences of a Chaplygin gas dark energy. Phys Rev D, 2003, 67: 023515ADSCrossRefGoogle Scholar
  67. 67.
    Bilic N, Tupper G B, Viollier R D. Unification of dark matter and dark energy: The inhomogeneous Chaplygin gas. Phys Lett B, 2002, 535: 17–21ADSMATHCrossRefGoogle Scholar
  68. 68.
    Alcaniz J S, Jain D, Dev A. High-redshift objects and the generalized Chaplygin gas. Phys Rev D, 2003, 67: 043514ADSCrossRefGoogle Scholar
  69. 69.
    Chimento L P. Extended tachyon field, Chaplygin gas, and solvable k-essence cosmologies. Phys Rev D, 2004, 69: 123517MathSciNetADSCrossRefGoogle Scholar
  70. 70.
    Fabris J C, Velton H E S, Ogouyandjou C, et al. Ruling out the modified Chaplygin gas cosmologies. Phys Lett B, 2011, 694: 289–293ADSCrossRefGoogle Scholar
  71. 71.
    Malekjani M, Khodam-Mohammadi A, Nazari-Pooya N. Generalized Chaplygin gas model: Cosmological consequences and statefinder diagnosis. Astrophys Space Sci, 2011, 334: 193–201ADSMATHCrossRefGoogle Scholar
  72. 72.
    Capozziello S, De Martino S, Falanga M. Van der Waals quintessence. Phys Lett A, 2002, 299: 494–498MathSciNetADSMATHCrossRefGoogle Scholar
  73. 73.
    Capozziello S, Cardone V F, Carloni S, et al. Constraining Van der Waals quintessence with observations. JCAP, 2005, 04: 005ADSCrossRefGoogle Scholar
  74. 74.
    Kremer G M. Cosmological models described by a mixture of van der Waals fluid and dark energy. Phys Rev D, 2003, 68: 123507ADSCrossRefGoogle Scholar
  75. 75.
    Nojiri S, Odintsov S D. Final state and thermodynamics of a dark energy universe. Phys Rev D, 2004, 70: 103522MathSciNetADSCrossRefGoogle Scholar
  76. 76.
    Nojiri S, Odintsov S D. Inhomogeneous equation of state of the universe: Phantom era, future singularity and crossing the phantom barrier. Phys Rev D, 2005, 72: 023003ADSCrossRefGoogle Scholar
  77. 77.
    Capozziello S, Cardone V F, Elizalde E, et al. Observational constraints on dark energy with generalized equations of state. Phys Rev D, 2006, 73: 043512ADSCrossRefGoogle Scholar
  78. 78.
    Sanchez I C, Lacombe R H. Statistical thermodynamics of polymer solutions. Macromolecules, 1978, 11: 1145–1156ADSCrossRefGoogle Scholar
  79. 79.
    Bardeen J M, Carter B, Hawking S W. The four laws of black hole mechanics. Commun Math Phys, 1973, 31: 161–170MathSciNetADSMATHCrossRefGoogle Scholar
  80. 80.
    Hawking S W. Particle creation by black holes. Commun Math Phys, 1975, 43: 199–220MathSciNetADSCrossRefGoogle Scholar
  81. 81.
    Suzuki N, Rubin D, Lidman C, et al. The Hubble space telescope cluster Supernova survey. V. Improving the dark-energy constraints above z > 1 and building an early-type-hosted Supernova sample. Astrophys J, 2012, 746: 85ADSCrossRefGoogle Scholar
  82. 82.
    Eisenstein D J, Hu W. Baryonic features in the matter transfer function. Astrophys J, 1998, 496: 605ADSCrossRefGoogle Scholar
  83. 83.
    Beutler F, Blake C, Colless M, et al. The 6 dF galaxy survey: Baryon Acoustic Oscillations and the local Hubble constant. Mon Not R Astron Soc, 2011, 416: 3017–3032ADSCrossRefGoogle Scholar
  84. 84.
    Percival W J, Reid B A, Eisenstein D J, et al. Baryon Acoustic Oscillations in the sloan digital sky survey data release 7 galaxy sample. Mon Not R Astron Soc, 2010, 401: 2148–2168ADSCrossRefGoogle Scholar
  85. 85.
    Blake C, Kazin E A, Beutler F, et al. The WiggleZ dark energy survey: Mapping the distance-redshift relation with baryon acoustic oscillations. Mon Not R Astron Soc, 2011, 418: 1707–1724ADSCrossRefGoogle Scholar
  86. 86.
    Riess A G, Macri L, Casertano S, et al. A redetermination of the Hubble constant with the Hubble space telescope from a differential distance ladder. Astrophys J, 2009, 699: 539–563ADSCrossRefGoogle Scholar
  87. 87.
    Stern D, Jimenez R, Verde L, et al. Cosmic chronometers: Constraining the equation of state of dark energy. I: H(z) measurements. JCAP, 2010, 02: 008ADSCrossRefGoogle Scholar
  88. 88.
    Gaztañaga E, Cabré A, Hui L. Clustering of luminous red galaxies IV: Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z). Mon Not R Astron Soc, 2009, 399: 1663–1680ADSCrossRefGoogle Scholar
  89. 89.
    Sahni V, Saini T D, Starobinsky A A. Statefinder—A new geometrical diagnostic of dark energy. U JETP Lett, 2003, 77: 201–206ADSCrossRefGoogle Scholar
  90. 90.
    Wei H. Tension in the recent Type Ia supernovae datasets. Phys Lett B, 2010, 687: 286–293ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.National Astronomical ObservatoriesChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina
  3. 3.Kavli Institute for Theoretical Physics ChinaChinese Academy of SciencesBeijingChina

Personalised recommendations