Science China Physics, Mechanics and Astronomy

, Volume 55, Issue 12, pp 2226–2236 | Cite as

Quantum transport in topological insulator hybrid structures—A combination of topological insulator and superconductor

  • YongXi Ou
  • Meenakshi Singh
  • Jian WangEmail author
Review Special Topic: Topological Insulators and Dirac Fermion


In this paper, a brief review of the history of topological insulators is given. After that, electronic transport experiments in topological insulator-superconductor hybrid structures, including experimental methods, physical properties and seemingly contradictory observations are discussed. Additionally, some new topological insulator hybrid structures are proposed.


topological insulator transport property superconductor hybrid structure surface state 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Qi X L, Zhang S C. The quantum spin Hall effect and topological insulators. Phys Tod, 2010, 63(1): 33–38; Moore J E. The birth of topological insulators. Nature, 2010, 464 (7486): 194–198MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Hasan M Z, Kane C L. Colloquium: Topological insulators. Rev Modern Phys, 2010, 82(4): 3045–3067; Qi X L, Zhang S C. Topological insulators and superconductors. Rev Modern Phys, 2011, 83 (4): 1057–1110ADSCrossRefGoogle Scholar
  3. 3.
    Murakami S, Nagaosa N, Zhang S C. Spin-Hall insulator. Phys Rev Lett, 2004, 93(15): 156804ADSCrossRefGoogle Scholar
  4. 4.
    Kane C L, Mele E J. Z2 topological order and the quantum spin hall effect. Phys Rev Lett, 2005, 95(14): 146802ADSCrossRefGoogle Scholar
  5. 5.
    Bernevig B A. Hughes T L, Zhang S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 2006, 314(5806): 1757–1761ADSCrossRefGoogle Scholar
  6. 6.
    Konig M, Wiedmann S, Brüne C, et al. Quantum spin hall insulator state in HgTe quantum wells. Science, 2007, 318(5851): 766–770ADSCrossRefGoogle Scholar
  7. 7.
    Fu L, Kane C L, Mele E J. Topological insulators in three dimensions. Phys Rev Lett, 2007, 98(10): 106803ADSCrossRefGoogle Scholar
  8. 8.
    Hsieh D, Qian D, Wray L, et al. A topological dirac insulator in a quantum spin Hall phase. Nature, 2008, 452(7190): 970–974ADSCrossRefGoogle Scholar
  9. 9.
    Zhang H J, Liu C X, Qi X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single dirac cone on the surface. Nat Phys, 2009, 5(6): 438–442CrossRefGoogle Scholar
  10. 10.
    Xia Y, Qian D, Hsieh D, et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat Phys, 2009, 5(6): 398–402CrossRefGoogle Scholar
  11. 11.
    Chen Y L, Analytis J G, Chu J H, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science, 2009, 325(5937): 178–181ADSCrossRefGoogle Scholar
  12. 12.
    Hsieh D, Xia Y, Wray L, et al. Observation of unconventional quantum spin textures in topological insulators. Science, 2009, 323(5916): 919–922ADSCrossRefGoogle Scholar
  13. 13.
    Hsieh D, Checkelsky J G, Ong N P, et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature, 2009, 460(7259): 1101–1106ADSCrossRefGoogle Scholar
  14. 14.
    Wang J, Li H, Chang C Z, et al. Current induced anisotropic magnetoresistance in topological insulator films. arXiv: 1108.1465 v1Google Scholar
  15. 15.
    Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6(3): 183–191ADSCrossRefGoogle Scholar
  16. 16.
    Pesin D, MacDnald A H. Spintronics and pseudospintronics in graphene and topological insulators. Nat Mater, 2012, 11(5): 409–416ADSCrossRefGoogle Scholar
  17. 17.
    Zhang Y, He K, Chang C Z, et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat Phys, 2010, 6(8): 584–588CrossRefGoogle Scholar
  18. 18.
    Qu D X, Hor Y S, Xiong J, et al. Quantum oscillations and hall anomaly of surface states in the topological insulator Bi2Te3. Science, 2010, 329(5993): 821–824ADSCrossRefGoogle Scholar
  19. 19.
    Peng H L, Lai K, Kong D, et al. Aharonov-Bohm interference in topological insulator nanoribbons. Nat Mater, 2010, 9(3): 225–229ADSGoogle Scholar
  20. 20.
    Checkelsky J G, Hor Y S, Liu M H, et al. Quantum interference in macroscopic crystals of nonmetallic Bi2Se3. Phys Rev Lett, 2009, 103(24): 246601ADSCrossRefGoogle Scholar
  21. 21.
    Chen J, Qin H J, Yang F, et al. Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3. Phys Rev Lett, 2010, 105(17): 176602ADSCrossRefGoogle Scholar
  22. 22.
    He H T, Wang G, Zhang T, et al. Impurity effect on weak antilocalization in the topological insulator Bi2Te3. Phys Rev Lett, 2011, 106(16): 166805ADSCrossRefGoogle Scholar
  23. 23.
    Wang J, DaSilva A M, Chang C Z, et al. Evidence for electronelectron interaction in topological insulator thin films. Phys Rev B, 2011, 83(24): 245438ADSCrossRefGoogle Scholar
  24. 24.
    Liu M H, Chang C Z, Zhang Z, et al. Electron interaction-driven insulating ground state in Bi2Se3 topological insulators in the two-dimensional limit. Phys Rev B, 2011, 83(16): 165440ADSCrossRefGoogle Scholar
  25. 25.
    Wilczek F. Majorana returns. Nat Phys, 2009, 5(9): 614–618MathSciNetCrossRefGoogle Scholar
  26. 26.
    Nayak C, Simon S H, Stern A, et al. Non-Abelian anyons and topological quantum computation. Rev Modern Phys, 2008, 80(3): 1083–1159MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    Jiang L, Kane C L, Preskill J. Interface between topological and superconducting qubits. Phys Rev Lett, 2011, 106(13): 130504ADSCrossRefGoogle Scholar
  28. 28.
    Fu L, Kane C L. Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys Rev Lett, 2008, 100(9): 096407ADSCrossRefGoogle Scholar
  29. 29.
    Fu L, Kane C L. Josephson current and noise at a superconductor /quantum-spin-Hall-insulator/superconductor junction. Phys Rev B, 2009, 79(16): 161408ADSCrossRefGoogle Scholar
  30. 30.
    Jiang L, Pekker D, Alicea J, et al. Unconventional Josephson signatures of Majorana bound states. Phys Rev Lett, 2011, 107(23): 236401ADSCrossRefGoogle Scholar
  31. 31.
    Tanaka Y, Yokoyama T, Nagaosa N. Manipulation of the majorana fermion, andreev reflection, and josephson current on topological insulators. Phys Rev Lett, 2009, 103(10): 107002ADSCrossRefGoogle Scholar
  32. 32.
    Grosfeld E, Stern A. Observing Majorana bound states of Josephson vortices in topological superconductors. PNAS, 2011, 108(29): 11810–11814CrossRefGoogle Scholar
  33. 33.
    Stanescu T D, Sau J D, Lutchyn R M, et al. Proximity effect at the superconductor-topological insulator interface. Phys Rev B, 2010, 81(24): 241310ADSCrossRefGoogle Scholar
  34. 34.
    Linder J, Tanaka Y, Yokoyama T, et al. Unconventional superconductivity on a topological insulator. Phys Rev Lett, 2010, 104(6): 067001ADSCrossRefGoogle Scholar
  35. 35.
    Chiu C K, Gilbert M J, Hughes T L. Vortex lines in topological insulator-superconductor heterostructures. Phys Rev B, 2011, 84(14): 144507ADSCrossRefGoogle Scholar
  36. 36.
    Hosur P, Ghaemi P, Mong R S K, et al. Majorana modes at the ends of superconductor vortices in doped topological insulators. Phys Rev Lett, 2011, 107(9): 097001ADSCrossRefGoogle Scholar
  37. 37.
    Cook A M, Vazifeh M M, Franz M. Stability of majorana fermions in proximity-coupled topological insulator nanowires. arXiv: 1206.3829 v1Google Scholar
  38. 38.
    Sacépé B, Oostinga J B, Li J, et al. Gate-tuned normal and superconducting transport at the surface of a topological insulator. Nat Commun, 2011, 2: 575CrossRefGoogle Scholar
  39. 39.
    Zhang D M, Wang J, DaSilva A M, et al. Superconducting proximity effect and possible evidence for Pearl vortices in a candidate topological insulator. Phys Rev B, 2011, 84(16): 165120ADSCrossRefGoogle Scholar
  40. 40.
    Koren G, Kirzhner T, Lahoud E, et al. Proximity-induced superconductivity in topological Bi2Te2Se and Bi2Se3 films: Robust zeroenergy bound state possibly due to Majorana fermions. Phys Rev B, 2011, 84(22): 224521ADSCrossRefGoogle Scholar
  41. 41.
    Veldhorst M, Snelder M, Hoek M, et al. Josephson supercurrent through a topological insulator surface state. Nat Mater, 2012, 11(5): 417–421ADSCrossRefGoogle Scholar
  42. 42.
    Wang M X, Liu C, Xu J P, et al. The coexistence of superconductivity and topological order in the Bi2Se3 thin films. Science, 2012, 336(6077): 52–55ADSCrossRefGoogle Scholar
  43. 43.
    Analytis J G, Chu J H, Chen Y, et al. Bulk Fermi surface coexistence with Dirac surface state in Bi2Se3: A comparison of photoemission and Shubnikov-de Haas measurements. Phys Rev B, 2010, 81(20): 205407ADSCrossRefGoogle Scholar
  44. 44.
    Xiong J, A. C. Petersen, Dongxia Qu, et al. Quantum oscillations in a topological insulator Bi2Te2Se2 with large bulk resistivity. Physica E, 2012, 44(5): 917–920ADSCrossRefGoogle Scholar
  45. 45.
    Qu F M, Yang F, Shen J, et al. Strong superconducting proximity effect in Pb-Bi2Te3 hybrid structures. Sci Rep, 2012, 2: 339CrossRefGoogle Scholar
  46. 46.
    Wang J, Chang C Z, Li H, et al. Interplay between topological insulators and superconductors. Phys Rev B, 2012, 85(4): 045415MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Williams J R, Bestwick A J, Gallagher P, et al. Signatures of majorana fermions in hybrid superconductor-topological insulator devices. arXiv: 1202.2323 v2Google Scholar
  48. 48.
    Yang F, Ding Y, Qu F, et al. Proximity effect at superconducting Sn-Bi2Se3 interface. Phys Rev B, 2012, 85(10): 104508ADSCrossRefGoogle Scholar
  49. 49.
    Veldhorst M, Molenaar C G, Wang X L, et al. Experimental realization of superconducting quantum interference devices with topological insulator junctions. Appl Phys Lett, 2012, 100(7): 072602ADSCrossRefGoogle Scholar
  50. 50.
    Tinkham M. Introduction to Superconductivity. 2nd ed. McGraw-Hill, Inc., 1996Google Scholar
  51. 51.
    Li L, Richter C, Mannhart J, et al. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nat Phys, 2011, 7(10): 762–766CrossRefGoogle Scholar
  52. 52.
    Qi X L, Li R D, Zang J D, et al. Inducing a magnetic monopole with topological surface states. Science. 2009, 323(5918): 1184–1187MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. 53.
    Yu R, Zhang W, Zhang H J, et al. Quantized anomalous hall effect in magnetic topological insulators. Science, 2010, 329(5987): 61–64ADSCrossRefGoogle Scholar
  54. 54.
    Pekker D, Refael G, Goldbart P M. Weber blockade theory of magnetoresistance oscillations in superconducting strips. Phys Rev Lett, 2011, 107(1): 017002ADSCrossRefGoogle Scholar
  55. 55.
    Qi X L, Hughes T L, Raghu S, et al. Time-reversal-invariant topological superconductors and superfluids in two and three dimensions. Phys Rev Lett, 2009, 102(18): 187001ADSCrossRefGoogle Scholar
  56. 56.
    Weng H M, Xu G, Zhang H, et al. Half-metallic surface states and topological superconductivity in NaCoO2 from first principles. Phys Rev B, 2011, 84(6): 060408ADSCrossRefGoogle Scholar
  57. 57.
    Fu L, Berg E. Odd-parity topological superconductors theory and application to CuxBi2Se3. Phys Rev Lett, 2010, 105(9): 097001ADSCrossRefGoogle Scholar
  58. 58.
    Xu G, Weng H, Wang Z, et al. Chern semimetal and the quantized anomalous hall effect in HgCr2Se4. Phys Rev Lett, 2011, 107(18): 186806ADSCrossRefGoogle Scholar
  59. 59.
    Xiao D, Yao Y, Feng W, et al. Half-heusler compounds as a new class of three-dimensional topological insulators. Phys Rev Lett, 2010, 105(9): 096404ADSCrossRefGoogle Scholar
  60. 60.
    Sun Y, Chen X Q, Yunoki S, et al. New family of three-dimensional topological insulators with antiperovskite structure. Phys Rev Lett, 2010, 105(21): 216406ADSCrossRefGoogle Scholar
  61. 61.
    Zhang W, et al. Topological aspect and quantum magnetoresistance of beta-Ag2Te. Phys Rev Lett, 2011, 106(15): 156808ADSCrossRefGoogle Scholar
  62. 62.
    Guo Y, Zhang Y F, Bao X Y, et al. Superconductivity modulated by quantum size effects. Science, 2004, 306(5703): 1915–1917ADSCrossRefGoogle Scholar
  63. 63.
    Zhang T, Cheng P, Li W J, et al. Superconductivity in one-atomiclayer metal films grown on Si(111). Nat Phys, 2010, 6(2): 104–108CrossRefGoogle Scholar
  64. 64.
    Dikin D A, Mehta M, Bark C W, et al. Coexistence of superconductivity and ferromagnetism in two dimensions. Phys Rev Lett, 2011, 107(5): 056802ADSCrossRefGoogle Scholar
  65. 65.
    Bert J A, Kalisky B, Bell C, et al. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nat Phys, 2011, 7(10): 767–771CrossRefGoogle Scholar
  66. 66.
    Wang Q Y, Li Z, Zhang W H, et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin Phys Lett, 2012, 29(3): 037402ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.International Center for Quantum Materials, School of PhysicsPeking UniversityBeijingChina
  2. 2.The Center for Nanoscale Science and Department of PhysicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations