Science China Physics, Mechanics and Astronomy

, Volume 55, Issue 10, pp 1763–1768 | Cite as

Enhancing the electric fields around the nanorods by using metal grooves



To enhance electric fields around nanorods, a Ag nanorod-groove system is presented and its electric field distribution is studied using the finite difference time domain method. Since the superposition of the electric fields of the split multi-beam of light works as excitation for electron oscillations in the nanorods, enhanced electric fields occur around the nanorods. In addition, the effects of topological parameters of the nanorod-groove system, such as the oblique angle of the groove, displacement of the nanorod to the bottom of the groove, and separation between the nanorods on electric field distributions are also studied. These results may be helpful for designing substrates to obtain larger electric fields around nanorods.


optical property nanorod-groove system plasmon finite difference time domain method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett, 1997, 78: 1667–1670ADSCrossRefGoogle Scholar
  2. 2.
    Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett, 1974, 26: 163–166ADSCrossRefGoogle Scholar
  3. 3.
    Vo-Dinh T. Surface-enhanced Raman spectroscopy using metallic nanostructures. Trends Anal Chem, 1998, 17: 557–582CrossRefGoogle Scholar
  4. 4.
    Tian Z Q, Ren B, Wu D Y. Surface-enhanced Raman scattering: From noble to transition metals and from rough surface to ordered nanostructures. J Phys Chem B, 2002, 106: 9463–9483CrossRefGoogle Scholar
  5. 5.
    Campion A, Kambhampati P. Surface enhanced Raman scattering. Chem Soc Rev, 1998, 27: 241–250CrossRefGoogle Scholar
  6. 6.
    Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J Phys Chem B, 2003, 107: 668–677CrossRefGoogle Scholar
  7. 7.
    Brunazzo D, Descrovi E, Martin O F. Narrowband optical interactions in a plasmonic nanoparticle chain coupled to a metallic film. Opt Lett, 2009, 34: 1405–1407ADSCrossRefGoogle Scholar
  8. 8.
    Lebedev V, Vergeles S, Vorobev P. Giant enhancement of electric field between two close metallic grains due to plasmonic resonance. Opt Lett, 2010, 35: 640–642CrossRefGoogle Scholar
  9. 9.
    Lu X, Han J, Zhang W. Transmission field enhancement of terahertz pulses in plasmonic rectangular coaxial geometries. Opt Lett, 2010, 35: 904–906ADSCrossRefGoogle Scholar
  10. 10.
    Lin H Y, Huang C H, Chang C H, et al. Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs. Opt Express, 2009, 18: 165–172ADSCrossRefGoogle Scholar
  11. 11.
    Iyer S, Popov S, Friberg A T. Transmission resonances in periodic U-shaped metallic nanostructures. Opt Express, 2010, 18: 17719–17728ADSCrossRefGoogle Scholar
  12. 12.
    Zhang Z Y, Zhao Y P. Tuning the optical absorption properties of Ag nanorods by their topologic shapes: A discrete dipole approximation calculation. Appl Phys Lett, 2006, 89: 023110–023112ADSCrossRefGoogle Scholar
  13. 13.
    Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275: 1102–1106CrossRefGoogle Scholar
  14. 14.
    Banaee M G, Crozier K B. Gold nanorings as substrates for surface-enhanced Raman scattering. Opt Lett, 2010, 35: 760–762ADSCrossRefGoogle Scholar
  15. 15.
    Lin C H, Jiang L, Zhou J, et al. Laser-treated substrate with nanoparticles for surface-enhanced Raman scattering. Opt Lett, 2010, 35: 941–943ADSCrossRefGoogle Scholar
  16. 16.
    Hatab N A, Hsueh C H, Gaddis A L, et al. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett, 2010, 10: 4952–4955ADSCrossRefGoogle Scholar
  17. 17.
    Theiss J, Pavaskar P, Echternach P M, et al. Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates. Nano Lett, 2010, 10: 2749–2754ADSCrossRefGoogle Scholar
  18. 18.
    Lee S Y, Hung L, Lang G S, et al. Dispersion in the SERS enhancement with silver nanocube dimers. ACS Nano, 2010, 4: 5763–5772CrossRefGoogle Scholar
  19. 19.
    Gopinath A, Boriskina S V, Premasiri W R, et al. Plasmonic nanogalaxies: Multiscale aperiodic arrays for surface-enhanced Raman scattering. Nano Lett, 2009, 9: 3922–3929CrossRefGoogle Scholar
  20. 20.
    Chaney S B, Shanmukh S, Dluhy R A, et al. Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates. Appl Phys Lett, 2005, 87: 031908–031910ADSCrossRefGoogle Scholar
  21. 21.
    Driskell J D, Shanmukh S, Liu Y J, et al. The use of aligned silver nanorod arrays prepared by oblique angle vapor deposition. J Phys Chem C, 2008, 112: 895–901CrossRefGoogle Scholar
  22. 22.
    Liu Y J, Fan J G, Zhao Y P, et al. Angle dependent surface enhanced Raman scattering obtained from a Ag nanorod array substrate. Appl Phys Lett, 2006, 89: 173134–173136ADSCrossRefGoogle Scholar
  23. 23.
    Chu H Y, Liu Y J, Huang Y W, et al. A high sensitive fiber SERS probe based on silver nanorod arrays. Opt Express, 2007, 15: 12230–12239ADSCrossRefGoogle Scholar
  24. 24.
    Zhang Z Y, Zhang Z D, Zhang L J, et al. Electric field enhancements around the nanorod on the base layer. Opt Express, 2011, 19: 7274–7279ADSCrossRefGoogle Scholar
  25. 25.
    Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmonpolariton guiding by subwavelength metal grooves. Phys Rev Lett, 2005, 95: 046802–046805ADSCrossRefGoogle Scholar
  26. 26.
    Liu Y J, Zhang Z Y, Zhao Q, et al. The role of the nano-spine in the nanocomb arrays for surface enhanced Raman scattering. Appl Phys Lett, 2009, 94: 033103–033105ADSCrossRefGoogle Scholar
  27. 27.
    Kane Y. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE T Antenn Propag, 1966, 14: 302–307MATHCrossRefGoogle Scholar
  28. 28.
    Gai H F, Wang J, Tian Q. Modified Debye model parameters of metals applicable for broadband calculations. Appl Opt, 2007, 46: 2229–2233ADSCrossRefGoogle Scholar
  29. 29.
    Søndergaard T, Bozhevolnyi S I, Beermann J, et al. Resonant plasmon nanofocusing by closed tapered gaps. Nano Lett, 2010, 10: 291–295ADSCrossRefGoogle Scholar
  30. 30.
    Deng X, Braun G B, Liu S, et al. Single-order, subwavelength resonant nanogratings as a uniformly hot substrate for surface enhanced Raman spectroscopy. Nano Lett, 2010, 10: 1780–1786ADSCrossRefGoogle Scholar
  31. 31.
    Chen C, Hutchison J A, Van Dorpe P, et al. Focusing plasmons in nanoslits for surface-enhanced Raman scattering. Small, 2009, 5: 2876–2882CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • YaNan Zhao
    • 1
    • 2
  • Yan Qin
    • 2
  • Wei Cao
    • 2
  • ZhongYue Zhang
    • 1
    • 2
  1. 1.College of Physics and Information TechnologyShaanxi Normal UniversityXi’anChina
  2. 2.School of Physical Science and TechnologySouthwest UniversityChongqingChina

Personalised recommendations