Science China Physics, Mechanics and Astronomy

, Volume 55, Issue 9, pp 1529–1534 | Cite as

Fidelity and fidelity susceptibility based on Hilbert-Schmidt inner product

Article Progress of Projects Supported by NSFC

Abstract

We reinvestigate the fidelity based on Hilbert-Schmidt inner product and give a simplified form. The geometric meaning of the fidelity is clarified. We then give the analytic expression of the fidelity susceptibility in both Hilbert and Liouville space. By using the reconstruction of symmetric logarithmic derivative in Liouville space, we present the time derivative of fidelity susceptibility with the normalized density vector representation.

Keywords

fidelity fidelity susceptibility Liouville space 

References

  1. 1.
    Uhlmann A. The “transition probability” in the state space of a*-algebra. Rep Math Phys, 1976, 9: 273–279MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Alberti P, Uhlmann A. Transition probabilities on C*- and W*-algebra. In: Proceedings of the Second International Conference on Operator Algebras, Ideals, and their Applications in Theoretical Physics. Leipzig: BSB B. G. Taubner-Verl., 1983Google Scholar
  3. 3.
    Alberti PM. A note on the transition probability over C*-algebras. Lett Math Phys, 1983, 7: 25–32MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Alberti P M, Uhlmann A. Stochastic linear maps and transition probability. Lett Math Phys, 1983, 7: 107–112MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Jozsa R. Fidelity for mixed quantum states. J Mod Opt, 1994, 41: 2315–2323MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Schumacher B. Quantum coding. Phys Rev A, 1995, 51: 2738–2747MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000MATHGoogle Scholar
  8. 8.
    Wang X, Yu C S, Yi X X. An alternative quantum fidelity for mixed states of qudits. Phys Lett A, 2008, 373: 58–60ADSMATHCrossRefGoogle Scholar
  9. 9.
    Mendoncça P, Napolitano R, Marchiolli M, et al. Alternative fidelity measure between quantum states. Phys Rev A, 2008, 78: 052330ADSCrossRefGoogle Scholar
  10. 10.
    You W L, Li Y W, Gu S J. Fidelity, dynamic structure factor, and susceptibility in critical phenomena. Phys Rev E, 2007, 76: 022101ADSCrossRefGoogle Scholar
  11. 11.
    Ma J, Xu L, Xiong H N, et al. Reduced fidelity susceptibility and its finite-size scaling behaviors in the Lipkin-Meshkov-Glick model. Phys Rev E, 2008, 78: 051126ADSCrossRefGoogle Scholar
  12. 12.
    Fano U. Pressure broadening as a prototype of relaxation. Phys Rev, 1963, 131: 259–268ADSMATHCrossRefGoogle Scholar
  13. 13.
    Zwanzig R. On the identity of three generalized master equations. Physica, 1964, 30: 1109–1123; Zwanzig R. Ensemble method in the theory of irreversibility. J Chem Phys, 1960, 33: 1338–1341; Zwanzig R. Statistical mechanics of irreversibility. In: Brittin W E, Downs B W, Downs J, eds. Boulder Lecture Notes in Theoretical Physics. New York: Interscience, 1960. 3: 106–141MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Redfield A G. On the theory of relaxation processes. IBM J Res Dev, 1957, 1: 19–31CrossRefGoogle Scholar
  15. 15.
    Jeener J. Superoperators in magnetic resonance. In: Waugh J S, ed. Advances in Magnetic Resonance. New York: Academic Press, 1982. 10: 1–38Google Scholar
  16. 16.
    Louisell W H. Quantum Statistical Properties of Radiation. New York: Wiley, 1973Google Scholar
  17. 17.
    Abragam A. The Principles of Nuclear Magnetism. London: Oxford Press, 1961Google Scholar
  18. 18.
    Goldman M. Quantum Description of High-Resolution NMR in Liquids. London: Clarendon Press, 1988Google Scholar
  19. 19.
    Ernst R R, Bodenbausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions. London: Clarendon Press, 1987Google Scholar
  20. 20.
    Ben-Reuven A. Spectral line shapes in gases in the binary-collision approximation. Adv Chem Phys, 1975, 33: 235–293ADSCrossRefGoogle Scholar
  21. 21.
    Mukamel S. Collisional broadening of spectral line shapes in twophoton and multiphoton processes. Phys Rep, 1982, 93: 1–60ADSCrossRefGoogle Scholar
  22. 22.
    Mukamel S. Principles of Nonlinear Optical Spectroscopy. Oxford: Oxford University Press, 1995Google Scholar
  23. 23.
    Schlienz J, Mahler G. Description of entanglement. Phys Rev A, 1995, 52: 4396–4404ADSCrossRefGoogle Scholar
  24. 24.
    Chruściński D, Kossakowski A. Non-Markovian quantum dynamics: Local versus nonlocal. Phys Rev Lett, 2010, 104, 070406ADSCrossRefGoogle Scholar
  25. 25.
    Gorini V, Kossakowski A, Sudarshan E. Completely positive dynamical semigroups of N-level systems. JMath Phys, 1976, 17: 821–826; Lindblad G. On the generators of quantum dynamical semigroups. Commun Math Phys, 1976, 48: 119–130MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Breuer H P. Genuine quantum trajectories for non-Markovian processes. Phys Rev A, 2004, 70: 012106ADSCrossRefGoogle Scholar
  27. 27.
    Helstrom C W. Quantum Detection and Estimation Theory. New York: Academic, 1976; Holevo A S. Probabilistic and Statistical Aspects of Quantum Theory. Amsterdam: North-Holland, 1982Google Scholar
  28. 28.
    May V, Kühn O. Charge and Energy Transfer Dynamics in Molecular Systems. Weinheim: Wiley-VCH, 2004Google Scholar
  29. 29.
    Lu X M, Wang X G, Sun C P. Quantum Fisher information flow and non-Markovian processes of open systems. Phys Rev A, 2010,82: 042103ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jing Liu
    • 1
  • XiaoMing Lu
    • 2
  • Jian Ma
    • 3
  • XiaoGuang Wang
    • 3
  1. 1.Zhejiang Institute of Modern Physics, Department of PhysicsZhejiang UniversityHangzhouChina
  2. 2.Centre for Quantum TechnologiesNational University of SingaporeSingaporeSingapore
  3. 3.Zhejiang Institute of Modern Physics, Department of PhysicsZhejiang UniversityHangzhouChina

Personalised recommendations