Science China Physics, Mechanics and Astronomy

, Volume 55, Issue 7, pp 1158–1162 | Cite as

Preparation of hierarchical TiO2 microspheres for enhancing photocurrent of dye sensitized solar cells

  • QiaoYing Jia
  • WenXiu QueEmail author
  • XinKu Qiu
  • Peng Zhong
  • Jin Chen
Article Special Topic: Nanotechnology for Bio/Energy Applications


Hierarchically structured TiO2 microspheres were prepared at a low temperature by combining a sol-gel process with a solvothermal route and characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction analysis. Results indicate that the phase structure of the as-prepared TiO2 products undergoes a transformation, which changes from amorphous microspheres with a smooth surface in the sol-gel process to hierarchical anatase ones consisting of nanocrystallines after the solvothermal treatment. The hierarchical anatase TiO2 microsphere shows large surface areas and good light scattering effects as the photoelectrodes for dye sensitized solar cells (DSSCs). DSSCs based on TiO2 microspheres exhibit an improvement power conversion efficiency of 6.58% and a high short current density of 13.83 mA/cm2 as compared to the commercial P25 based DSSCs with a power conversion efficiency of 4.94% and a high short current density of 10.28 mA/cm2.


TiO2 microspheres photoelectrodes dye sensitized solar cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O’Regan B, Grätzel M. A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737–739CrossRefGoogle Scholar
  2. 2.
    Grätzel M. Photoelectrochemical cells. Nature, 2001, 414: 338–344ADSCrossRefGoogle Scholar
  3. 3.
    Wang Q, Ito S, Grätzel M, et al. Characteristics of high efficiency dye-sensitized solar cells. J Phys Chem B, 2006, 110(50), 25210–25221CrossRefGoogle Scholar
  4. 4.
    Mor G K, Shankar K, Paulose M, et at. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett, 2006, 6(2): 215–218ADSCrossRefGoogle Scholar
  5. 5.
    Fan Z, Razavi H, Do J, et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat Mater, 2009, 8(8): 648–653ADSCrossRefGoogle Scholar
  6. 6.
    Alivov Y, Fan Z Y. Efficiency of dye sensitized solar cells based on TiO2 nanotubes filled with nanoparticles. Appl Phys Lett, 2009, 95(6): 063504ADSCrossRefGoogle Scholar
  7. 7.
    Feng X, Shankar K, Varghese O K, et al. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett, 2008, 8(11): 3781–3786ADSCrossRefGoogle Scholar
  8. 8.
    Yang S C, Yang D J, Kim J, et al. Hollow TiO2 hemispheres obtained by colloidal templating for application in dye-sensitized solar cells. Adv Mater, 2008, 20(5): 1059–1064CrossRefGoogle Scholar
  9. 9.
    Lin C J, Yu W Y, Chien S H. Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells. J Mater Chem, 2010, 20(6): 1073–1077CrossRefGoogle Scholar
  10. 10.
    Leschkies K S, Divakar R, Basu J, et al. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett, 2007, 7(6): 1793–1798ADSCrossRefGoogle Scholar
  11. 11.
    Sauvage F, Fonzo F D, Bassi A L, et al. Hierarchical TiO2 photoanode for dye-sensitized solar cells. Nano Lett, 2010, 10(7): 2562–2567ADSCrossRefGoogle Scholar
  12. 12.
    Zhuge F, Qiu J, Li X, et al. Toward hierarchical TiO2 nanotube arrays for efficient dye-sensitized solar cells. Adv Mater, 2011, 23(11): 1330–1334CrossRefGoogle Scholar
  13. 13.
    Kim Y J, Lee M H, Kim H J, et al. Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv Mater, 2009, 21(36): 3668–3673CrossRefGoogle Scholar
  14. 14.
    Shi Y, Zhan C, Wang L, et al. Polydisperse spindle-shaped ZnO particles with their packing micropores in the photoanode for highly efficient quasi-solid dye-sensitized solar cells. Adv Funct Mater, 2010, 20(3): 437–444CrossRefGoogle Scholar
  15. 15.
    Chou T P, Zhang Q, Fryxell G E, et al. Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Adv Mater, 2007, 19(18): 2588–2592CrossRefGoogle Scholar
  16. 16.
    Chen D, Huang F, Cheng Y B, et al. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells. Adv Mater, 2009, 21(21): 2206–2210CrossRefGoogle Scholar
  17. 17.
    Chen Z, Wen J, Yan C, et al. High-performance supercapacitors based on hierarchically porous graphite particles. Adv Energy Mater, 2011, 1(4): 551–556CrossRefGoogle Scholar
  18. 18.
    Yang W, Li J, Wang Y, et al. A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells. Chem Commun, 2011, 47(6): 1809–1811MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wang C, Yin L, Zhang L, et al. Large scale synthesis and gas-sensing propertied of anatase TiO2 three-dimensional hierarchical nanostructures. Langmuir, 2010, 26(15): 12841–12848CrossRefGoogle Scholar
  20. 20.
    Liao J Y, Lei B X, Kuang D B, et al. Tri-functional hierarchical TiO2 spheres consisting of anatase nanorods and nanoparticles for high efficiency dye-sensitized solar cells. Energy Environ Sci, 2011, 4(10): 4079–4085CrossRefGoogle Scholar
  21. 21.
    Eiden-Assmann S, Widoniak J, Maret G. Synthesis and characterization of porous and nonporous monodisperse colloidal TiO2 particles. Chem Mater, 2004, 16(1): 6–11CrossRefGoogle Scholar
  22. 22.
    Ito S, Liska P, Comte P, et al. Control of dark current in photoelectrochemical (TiO2/I–I3) and dye-sensitized solar cells. Chem Commun, 2005, 41(34): 4351–4353CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • QiaoYing Jia
    • 1
    • 2
  • WenXiu Que
    • 1
    Email author
  • XinKu Qiu
    • 1
  • Peng Zhong
    • 1
  • Jin Chen
    • 1
  1. 1.Electronic Materials Research Laboratory, School of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.School of Technical PhysicsXidian UniversityXi’anChina

Personalised recommendations