Science China Physics, Mechanics and Astronomy

, Volume 55, Issue 7, pp 1330–1334 | Cite as

Dark energy and fate of the Universe

  • XiaoDong Li
  • Shuang Wang
  • QingGuo Huang
  • Xin Zhang
  • Miao Li


We explore the ultimate fate of the Universe by using a divergence-free parametrization for dark energy w(z)=w 0+w a [ln(2 + z) / (1 + z) − ln 2]. Unlike the Chevallier-Polarski-Linder parametrization, this parametrization has well behaved, bounded behavior for both high redshifts and negative redshifts, and thus can genuinely cover many theoretical dark energy models. After constraining the parameter space of this parametrization by using the current cosmological observations, we find that, at the 95.4% confidence level, our Universe can still exist at least 16.7 Gyr before it ends in a big rip. Moreover, for the phantom energy dominated Universe, we find that a gravitationally bound system will be destroyed at a time \({{t \simeq P\sqrt {2\left| {1 + 3w( - 1)} \right|} } \mathord{\left/ {\vphantom {{t \simeq P\sqrt {2\left| {1 + 3w( - 1)} \right|} } {\left[ {6\pi \left| {1 + w( - 1)} \right|} \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {6\pi \left| {1 + w( - 1)} \right|} \right]}}\), where P is the period of a circular orbit around this system, before the big rip.


dark energy dynamical evolution fate of the Universe 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Copeland E J, Sami M, Tsujikawa S. Dynamics of dark energy. Int J Mod Phys D, 2006, 15: 1753–1936; Frieman J, Turner M, Huterer D. Dark energy and the accelerating universe. Ann Rev Astron Astrophys, 2008, 46: 385–432; Li M, Li X D, Wang S, et al. Dark energy. Commun Theor Phys, 2011, 56: 525–604MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Huterer D, Starkman G. Parameterization of dark-energy properties: A principal-component approach. Phys Rev Lett, 2003, 90: 031301; Huterer D, Cooray A. Uncorrelated estimates of dark energy evolution. Phys Rev D, 2005, 71: 023506ADSCrossRefGoogle Scholar
  3. 3.
    Amanullah R, Lidman C, Rubin D, et al. Spectra and light curves of six type Ia supernovae at 0.511<z<1.12 and the Union2 compilation. Astrophys J, 2010, 716: 712–738; Sullivan M, Guy J, Conley A, et al. SNLS3: Constraints on dark energy combining the Supernova Legacy Survey three year data with other probes. Astrophys J, 2011, 737: 102; Wang S, Li X D, Li M. Exploring the latest Union2 SNIa dataset by using model-independent parametrization methods. Phys Rev D, 2011, 83: 023010; Li X D, Li S, Wang S, et al. Probing cosmic acceleration by using the SNLS3 SNIa dataset. JCAP, 2011, 1107: 011ADSCrossRefGoogle Scholar
  4. 4.
    Chevallier M, Polarski D. Accelerating universes with scaling dark matter. Int J Mod Phys D, 2001, 10: 213–224ADSCrossRefGoogle Scholar
  5. 5.
    Linder E V. Exploring the expansion history of the universe. Phys Rev Lett, 2003, 90: 091301ADSCrossRefGoogle Scholar
  6. 6.
    Ma J Z, Zhang X. Probing the dynamics of dark energy with novel parametrizations. Phys Lett B, 2011, 699: 233–238ADSCrossRefGoogle Scholar
  7. 7.
    Li H, Zhang X. Probing the dynamics of dark energy with divergence-free parametrizations: A global fit study. Phys Lett B, 2011, 703: 119–123; Li H, Zhang X. Constraining dynamical dark energy with a divergence-free parametrization in the presence of spatial curvature and massive neutrinos. arXiv: 1202.4071ADSCrossRefGoogle Scholar
  8. 8.
    Conley A, Guy J, Sullivan M, et al. Supernova constraints and systematic uncertainties from the first 3 years of the Supernova Legacy Survey. Astrophys J Suppl, 2011, 192: 1ADSCrossRefGoogle Scholar
  9. 9.
    Komatsu E, Smith K M, Dunkley J, et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological interpretation. Astrophys J Suppl, 2011, 192: 18ADSCrossRefGoogle Scholar
  10. 10.
    Percival W J, Reid B A, Eisenstein D J, et al. Baryon acoustic oscillations in the Sloan Digital Sky Survey data release 7 galaxy sample. Mon Not R Astron Soc, 2010, 401: 2148–2168ADSCrossRefGoogle Scholar
  11. 11.
    Riess A G, Macri L, Casertano S, et al. A 3% solution: Determination of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3. Astrophys J, 2011, 730: 119ADSCrossRefGoogle Scholar
  12. 12.
    Lewis A, Bridle S. Cosmological parameters from CMB and other data: A Monte Carlo approach. Phys Rev D, 2002, 66: 103511ADSCrossRefGoogle Scholar
  13. 13.
    Caldwell R R, Kamionkowski M, Weinberg N N. Phantom energy: Dark energy with w<−1 causes a cosmic doomsday. Phys Rev Lett, 2003, 91: 071301ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • XiaoDong Li
    • 1
    • 2
  • Shuang Wang
    • 1
    • 2
  • QingGuo Huang
    • 2
    • 3
  • Xin Zhang
    • 4
    • 5
  • Miao Li
    • 2
    • 3
  1. 1.Department of Modern PhysicsUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Frontiers in Theoretical PhysicsChinese Academy of SciencesBeijingChina
  4. 4.Department of Physics, College of SciencesNortheastern UniversityShenyangChina
  5. 5.Center for High Energy PhysicsPeking UniversityBeijingChina

Personalised recommendations