Asymmetric transportation induced by thermal noise at the nanoscale

Article

Abstract

Based on a simple model, we theoretically show that asymmetric transportation is possible in nanoscale systems experiencing thermal noise without the presence of external fluctuations. The key to this theoretical advance is that the correlation lengths of the thermal fluctuations become significantly long for nanoscale systems. This differs from macroscopic systems in which the thermal noises are usually treated as white noise. Our observation does not violate the second law of thermodynamics, since at the nanoscale, extra energy is required to keep the asymmetric structure against thermal fluctuations.

Keywords

ratchet nanoscale thermal fluctuations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mahmud G, Campbell C J, Bishop J M, et al. Directing cell motions on micropatterned ratchets. Nat Phys, 2009, 5: 606–612CrossRefGoogle Scholar
  2. 2.
    Neupert W, Brunner M. The protein import motor of mitochondria. Nat Rev Mol Cell Bio, 2002, 3: 555–565CrossRefGoogle Scholar
  3. 3.
    Simon S M, Peskin C S, Oster G F. What drives the translocation of proteins? Proc Natl Acad Sci USA, 1992, 89: 3770–3774ADSCrossRefGoogle Scholar
  4. 4.
    Hernández J V, Kay E R, Leigh D A. A reversible synthetic rotary molecular motor. Science, 2004, 306: 1532–1537ADSCrossRefGoogle Scholar
  5. 5.
    Kelly T R, Silva H D, Silva R A. Unidirectional rotary motion in a molecular system. Nature, 1999, 401: 150–152ADSCrossRefGoogle Scholar
  6. 6.
    Saffarian S, Collier I E, Marmer B L, et al. Interstitial collagenase is a Brownian Ratchet driven by proteolysis of collagen. Science, 2004, 306: 108–111ADSCrossRefGoogle Scholar
  7. 7.
    Gebhardt J C M, Clemen A E M, Jaud J, et al. Myosin-V is a mechanical ratchet. Proc Natl Acad Sci USA, 2006, 103: 8680–8685ADSCrossRefGoogle Scholar
  8. 8.
    Takano M, Terada T P, Sasai M. Unidirectional Brownian motion observed in an in silico single molecule experiment of an actomyosin motor. Proc Natl Acad Sci USA, 2010, 107: 7769–7774ADSCrossRefGoogle Scholar
  9. 9.
    Wang G M, Sevick E M, Mittag E, et al. Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys Rev Lett, 2002, 89: 050601ADSCrossRefGoogle Scholar
  10. 10.
    Leigh D A, Wong J K Y, Dehez F, et al. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature, 2003, 424: 174–179ADSCrossRefGoogle Scholar
  11. 11.
    Toyabe S, Sagawa T, Ueda M, et al. Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat Phys, 2010, 6: 988–992CrossRefGoogle Scholar
  12. 12.
    Kosztin I, Schulten K. Fluctuation-driven molecular transport through an asymmetric membrane channel. Phys Rev Lett, 2004, 93: 238102ADSCrossRefGoogle Scholar
  13. 13.
    Smoluchowski M V. Experimentell nachweisbare der üblichen Thermodynamik wiedersprechende Molekularphänomene. Physik Z, 1912, 13: 1069–1080Google Scholar
  14. 14.
    Feynman R P, Leighyon R B, Sands M. The Feynman Lectures on Physics. Reading, MA: Addison-Wesley, 1963. Vol. 1, Chapter 46Google Scholar
  15. 15.
    Jung P, Kissner J G, Hänggi P. Regular and chaotic transport in asymmetric periodic potentials: Inertia ratchets. Phys Rev Lett, 1996, 76: 3436–3439ADSCrossRefGoogle Scholar
  16. 16.
    Mateos J L. Chaotic transport and current reversal in deterministic ratchets. Phys Rev Lett, 2000, 84: 258–261ADSCrossRefGoogle Scholar
  17. 17.
    Arzola A V, Volke-Sepúlveda V, Mateos J L. Experimental control of transport and current reversals in a deterministic optical rocking ratchet. Phys Rev Lett, 2011, 106: 168104ADSCrossRefGoogle Scholar
  18. 18.
    Magnasco M O. Forced thermal ratchets. Phys Rev Lett, 1993, 71: 1477–1481ADSCrossRefGoogle Scholar
  19. 19.
    Kettner C, Reimann P, Hänggi P, et al. Drift ratchet. Phys Rev E, 2000, 61: 312–323ADSCrossRefGoogle Scholar
  20. 20.
    Bao J D, Zhou Y, Lu K. Anomalous diffusion in periodic potentials under self-similar colored noise. Phys Rev E, 2006, 74: 041125ADSCrossRefGoogle Scholar
  21. 21.
    Reimann P. Brownian motors: Noisy transport far from equilibrium. Phys Rep, 2002, 361: 57–265MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Kelly T K, Tellitu I, Sestelo J P. In search of molecular ratchets. Angew Chem Int Ed Engl, 1997, 36: 1866–1868CrossRefGoogle Scholar
  23. 23.
    Davis A P. Tilting at windmills? The second law survives. Angew Chem Int Ed, 1998, 37: 909–910ADSCrossRefGoogle Scholar
  24. 24.
    Risken H. The Fokker-Planck Equation: Methods of Solution and Applications. Berlin: Springer-Verlag, 1989MATHCrossRefGoogle Scholar
  25. 25.
    Wang B Y, Král P. Coulombic dragging of molecules on surfaces induced by separately flowing liquids. J Am Chem Soc, 2006, 128: 15984–15985CrossRefGoogle Scholar
  26. 26.
    Gong X J, Li J Y, Lu H J, et al. A charge-driven molecular water pump. Nat Nanotechnol, 2007, 2: 709–712ADSCrossRefGoogle Scholar
  27. 27.
    Joseph S, Aluru N R. Pumping of confined water in carbon nanotubes by rotation-translation coupling. Phys Rev Lett, 2008, 101: 604502CrossRefGoogle Scholar
  28. 28.
    Zhang X J, Qian H, Qian M. Stochastic theory of nonequilibrium steady states and its applications. Part I. Phys Rep, 2012, 510: 1–86ADSGoogle Scholar
  29. 29.
    Berendsen H J C, Postma J P M, DiNola A, et al. Molecular dynamics with coupling to an external bath. J Chem Phys, 1984, 81: 3684–3690ADSCrossRefGoogle Scholar
  30. 30.
    Nosé S A. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys, 1984, 52: 255–268ADSCrossRefGoogle Scholar
  31. 31.
    Hoover W G. Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A, 1985, 31: 1695–1697ADSCrossRefGoogle Scholar
  32. 32.
    van der Spoel D, Lindahl E, Hess B, et al. Gromacs-3.3. User Manual. Department of Biophysical Chemistry, University of Groningen, 2005Google Scholar
  33. 33.
    Jorgensen W L, Chandrasekhar J, Madura J D. Comparison of simple potential functions for simulating liquid water. J Chem Phys, 1983, 79: 926–935ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Division of Interfacial Water and Laboratory of Physical Biology, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations