A hierarchical dislocation-grain boundary interaction model based on 3D discrete dislocation dynamics and molecular dynamics

  • Yuan Gao
  • Zhuo Zhuang
  • XiaoChuan You
Research Paper Special Issue: Forward for the Department of Engineering Mechanics, Tsinghua University


We develop a new hierarchical dislocation-grain boundary (GB) interaction model to predict the mechanical behavior of polycrystalline metals at micro and submicro scales by coupling 3D Discrete Dislocation Dynamics (DDD) simulation with the Molecular Dynamics (MD) simulation. At the microscales, the DDD simulations are responsible for capturing the evolution of dislocation structures; at the nanoscales, the MD simulations are responsible for obtaining the GB energy and ISF energy which are then transferred hierarchically to the DDD level. In the present model, four kinds of dislocation-GB interactions, i.e. transmission, absorption, re-emission and reflection, are all considered. By this methodology, the compression of a Cu micro-sized bi-crystal pillar is studied. We investigate the characteristic mechanical behavior of the bi-crystal compared with that of the single-crystal. Moreover, the comparison between the present penetrable model of GB and the conventional impenetrable model also shows the accuracy and efficiency of the present model.


Grain boundary Multiscale simulation Discrete dislocation dynamics Bi-crystal compression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhou H, Qu S. The effect of nanoscale twin boundaries on fracture toughness in nanocrystalline Ni. Nanotechnol, 2010, 21: 035706CrossRefADSGoogle Scholar
  2. 2.
    Zhou H, Qu S, Yang W. Toughening by nano-scaled twin boundaries in nanocrystals. Modell Simul Mater Sci Eng, 2010, 18: 065002CrossRefADSGoogle Scholar
  3. 3.
    Livingston J D, Chalmers B. Multiple slip in bicrystal deformation. Acta Metall, 1957, 5: 322–327CrossRefGoogle Scholar
  4. 4.
    Shen Z, Wagoner R H, Clark W A T. Dislocation pile-up and grain boundary interactions in 304 stainless steel. Scr Metall, 1986, 20: 921–926CrossRefGoogle Scholar
  5. 5.
    Shen Z, Wagoner R H, Clark W A T. Dislocation and grain boundary interactions in metals. Acta Metall, 1988, 36: 3231–3242CrossRefGoogle Scholar
  6. 6.
    Lee T C, Robertson I M, Birnbaum H K. Prediction of slip transfer mechanisms across grain boundaries. Scr Metall, 1989, 23: 799–803CrossRefGoogle Scholar
  7. 7.
    Lee T C, Robertson I M, Birnbaum H K. TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals. Philos Mag A, 1990, 62: 131–153CrossRefADSGoogle Scholar
  8. 8.
    Couzinié J P, Décamps B, Priester L. Interaction of dissociated lattice dislocations with a Σ=3 grain boundary in copper. Int J Plast, 2005, 21: 759–775CrossRefzbMATHGoogle Scholar
  9. 9.
    Luster J, Morris M. Compatibility of deformation in two-phase Ti-Al alloys: Dependence on microstructure and orientation relationships. Metall Mater Trans A, 1995, 26: 1745–1756CrossRefGoogle Scholar
  10. 10.
    Ashmawi W, Zikry M. Prediction of grain-boundary interfacial mechanisms in polycrystalline materials. J Eng Mater Technol, 2002, 124: 88–96CrossRefGoogle Scholar
  11. 11.
    Gibson M, Forwood C. Slip transfer of deformation twins in duplex γ-based Ti-Al alloys: Part III. Transfer across general large-angle γ-γ grain boundaries. Philos Mag A, 2002, 82: 1381–1404ADSGoogle Scholar
  12. 12.
    Pestman B, Th J, De Hosson M, et al. Interaction between lattice dislocations and grain boundaries in fcc and ordered compounds: a computer simulation. Philos Mag A, 1991, 64: 951–969CrossRefADSGoogle Scholar
  13. 13.
    Dewald M, Curtin W. Multiscale modelling of dislocation/grain-boundary interactions: I. Edge dislocations impinging on Sigma11 (1 1 3) tilt boundary in Al. Modell Simul Mater Sci Eng, 2007, 15: 193–215CrossRefADSGoogle Scholar
  14. 14.
    Priester L. “Dislocation-interface” interaction — stress accommodation processes at interfaces. Mater Sci Eng A, 2001, 309–310: 430–439Google Scholar
  15. 15.
    Zhu T, Li J, Samanta A, et al. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc Nat Acad Sci, 2007, 104: 3031–3036CrossRefADSGoogle Scholar
  16. 16.
    Van Swygenhoven H, Derlet P, Frøseth A. Nucleation and propagation of dislocations in nanocrystalline fcc metals. Acta Mater, 2006, 54: 1975–1983CrossRefGoogle Scholar
  17. 17.
    Zheng Y, Lu J, Zhang H, et al. Strengthening and toughening by interface-mediated slip transfer reaction in nanotwinned copper. Scr Mater, 2009, 60: 508–511CrossRefGoogle Scholar
  18. 18.
    De Koning M, Miller R, Bulatov V, et al. Modelling grain-boundary resistance in intergranular dislocation slip transmission. Philos Mag A, 2002, 82: 2511–2527CrossRefADSGoogle Scholar
  19. 19.
    Clark W A T, Wagoner R H, Shen Z Y, et al. On the criteria for slip transmission across interfaces in polycrystals. Scr Metall Mater, 1992, 26: 203–206CrossRefGoogle Scholar
  20. 20.
    Jin Z, Gumbsch P, Ma E, et al. The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centred cubic metals. Scr Mater, 2006, 54: 1163–1168CrossRefGoogle Scholar
  21. 21.
    Jin Z, Gumbsch P, Albe K, et al. Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater, 2008, 56: 1126–1135CrossRefGoogle Scholar
  22. 22.
    Bulatov V V, Cai W. Computer Simulations of Dislocations. New York: Oxford University Press, 2006zbMATHGoogle Scholar
  23. 23.
    Gao Y, Zhuang Z, Liu Z, et al. Characteristic sizes for exhaustion-hardening mechanism of compressed Cu single-crystal micropillars. Chin Phys Lett, 2010, 27: 086103CrossRefADSGoogle Scholar
  24. 24.
    Gao Y, Liu Z, You X, et al. A hybrid multiscale computational framework of crystal plasticity at submicron scales. Comput Mater Sci, 2010, 49: 672–681CrossRefGoogle Scholar
  25. 25.
    Liu Z L, Liu X M, Zhuang Z, et al. Atypical three-stage-hardening mechanical behavior of Cu single-crystal micropillars. Scr Mater, 2009, 60: 594–597CrossRefGoogle Scholar
  26. 26.
    Li Z, Hou C, Huang M, et al. Strengthening mechanism in micro-polycrystals with penetrable grain boundaries by discrete dislocation dynamics simulation and Hall-Petch effect. Comput Mater Sci, 2009, 46: 1124–1134CrossRefGoogle Scholar
  27. 27.
    Bollmann W. Crystal Defects and Crystalline Interfaces. New York: Springer, 1970Google Scholar
  28. 28.
    Groh S, Marin E, Horstemeyer M, et al. Multiscale modeling of the plasticity in an aluminum single crystal. Int J Plast, 2009, 25: 1456–1473CrossRefzbMATHGoogle Scholar
  29. 29.
    Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117: 1–19CrossRefzbMATHADSGoogle Scholar
  30. 30.
    Ng K S, Ngan A H W. Deformation of micron-sized aluminium bi-crystal pillars. Philos Mag, 2009, 89: 3013–3026CrossRefADSGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Applied Mechanics Lab, School of AerospaceTsinghua UniversityBeijingChina

Personalised recommendations