Thickness effects on magnetoelectric coupling for Metglas/PZT/Metglas laminates

  • Fei FangEmail author
  • ChangPeng Zhao
  • Wei Yang
Research Paper Special Issue: Forward for the Department of Engineering Mechanics, Tsinghua University


Thickness effects on the ME coefficient αME and electromechanical resonance frequency of Metglas/PZT/Metglas tri-layered laminates are investigated. The thickness of the magnetic plate is changed by assembling different numbers of the Metglas thin sheets (30 μm for each layer) while the PZT plate is maintained at constant thickness (0.5 mm). At 1 kHz of the applied alternating magnetic field, only one peak presents in the ME coefficient (α ME) versus static magnetic field (H S) curve. As the thickness ratio n increases, the peak value of μME first increases and reaches a maximum at approximately n = 0.519, and then decreases afterward. The peak position (H optim) moves steadily toward a higher value as n increases. It is suggested that the relaxation factor k of the magnetic phase is reduced as n increases, causing the decrease of the piezomagnetic coefficient d 11,m and the increase of H optim. By employing the micromechanics model and considering the degradation of d 11,m with n, an optimized thickness ratio of 0.5 is predicted, which is in agreement with the experimental observations. The resonance frequency of the laminate increases with n, which is consistent with the calculation using a straightforward mixture law.


magnetoelectric behavior layered composite PZT Metgals multiferroic materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Srinivasan G, Rasmussen E T, Gallegos J, et al. Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys Rev B, 2001, 64: 214408CrossRefADSGoogle Scholar
  2. 2.
    Srinivasan G, Rasmussen E T, Gallegos J, et al. Magnetoelectric effects in ferrite-lead zirconate titanate layered composites: The influence of zinc substitution in ferrites. Phys Rev B, 2003, 67: 014418CrossRefADSGoogle Scholar
  3. 3.
    Dong S X, Zhai J Y, Xing Z P, et al. Extremely low frequency response of magnetoelectric multilayer composites. Appl Phys Lett, 2005, 86: 102901CrossRefADSGoogle Scholar
  4. 4.
    Zhai J Y, Xing Z P, Dong S X, et al. Magnetoelectric laminate composites: an overview. J Am Ceram Soc, 2008, 91: 351–358CrossRefGoogle Scholar
  5. 5.
    Nan C W, Bichurin M I, Dong S X, et al. Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys, 2008, 103: 031101CrossRefADSGoogle Scholar
  6. 6.
    Peng S, Yang P, Cai W, et al. Magnetostrictive study in Terfenol-D/Tb2(MoO4)3 bilayer composites. J Appl Phys, 2009, 105: 061622CrossRefADSGoogle Scholar
  7. 7.
    Dong S X, Zhai J, Li J F, et al. Small dc magnetic field response of magnetoelectric laminate composites. Appl Phys Lett, 2006, 88: 082907CrossRefADSGoogle Scholar
  8. 8.
    Semenov A A, Karmanenkov S F, Demidov V E, et al. Ferrite-ferroelectric layered structures for electrically and magnetically tunable microwave resonators. Appl Phys Lett, 2006, 88: 033503CrossRefADSGoogle Scholar
  9. 9.
    Fetisov Y K, Srinivasan G. Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator. Appl Phys Lett, 2006, 88: 143503CrossRefADSGoogle Scholar
  10. 10.
    Ryu J, Priya S, Uchino K, et al. Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J Electroceram, 2002, 8: 107–119CrossRefGoogle Scholar
  11. 11.
    Dong S X, Li J F, Viehland D. Characterization of magnetoelectric laminate composites operated in longitudinal-transverse and transverse-transverse modes. J Appl Phys, 2004, 95: 2625–2630CrossRefADSGoogle Scholar
  12. 12.
    Dong S X, Zhai J, Li J F, et al. Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a 2-1 connectivity. Appl Phys Lett, 2006, 89: 252904CrossRefADSGoogle Scholar
  13. 13.
    Fang Z, Lu S G, Li F, et al. Enhancing the magnetoelectric response of metglas/polyvinylidene fluoride laminates by exploiting the flux concentration effect. Appl Phys Lett, 2009, 95: 112903CrossRefADSGoogle Scholar
  14. 14.
    Laletsin U, Padubnaya N, Srinivasan G, et al. Frequency dependence of magnetoelectric interactions in layered structures of ferromagnetic alloys and piezoelectric oxides. Appl Phys A, 2004, 78: 33–36CrossRefADSGoogle Scholar
  15. 15.
    Srinivasan G, Rasmussen E T, Levin B J, et al. Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys Rev B, 2002, 65: 134402CrossRefADSGoogle Scholar
  16. 16.
    Dong S X, Zhai J Y. Equivalent circuit method for dc and dynamic analysis of magnetoelectric laminated composites. Chin Sci Bull, 2008, 53: 2113–2123CrossRefGoogle Scholar
  17. 17.
    Lin Y H, Cai N, Zhai J Y, et al. Giant magnetoelectric effect in multiferroic laminated composites. Phys Rev B, 2005, 72: 012405CrossRefADSGoogle Scholar
  18. 18.
    Sim C H, Pan A Z Z, Wang J. Thickness and coupling effects in bilayered multiferroic CoFe2O4/Pb(Zr0.52Ti0.48)O3 thin films. J Appl Phys, 2008, 103: 124109CrossRefADSGoogle Scholar
  19. 19.
    Srinivasan G, De Vreugd C P, Laletin V M, et al. Resonant magnetoelectric coupling in trilayers of ferromagnetic alloys and piezoelectric lead zirconate titanate: The influence of bias magnetic field. Phys Rev B, 2005, 71: 184423CrossRefADSGoogle Scholar
  20. 20.
    Zheng X J, Liu X E. A nonlinear constitutive model for Terfenol-D rods. J Appl Phys, 2005, 97: 053901CrossRefADSGoogle Scholar
  21. 21.
    Israel C, Petrov V M, Srinivasan G, et al. Magnetically tuned mechanical resonances in magnetoelectric multilayer capacitors. Appl Phys Lett, 2009, 95: 072505CrossRefADSGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Key Laboratory of Applied Mechanics, School of AerospaceTsinghua UniversityBeijingChina
  2. 2.University OfficeZhejiang UniversityHangzhouChina

Personalised recommendations