Science China Physics, Mechanics and Astronomy

, Volume 54, Issue 7, pp 1359–1366 | Cite as

Implementation of the Earth-based planetary radio occultation inversion technique

  • SuJun Zhang
  • JinSong Ping
  • TingTing Han
  • XiaoFei Mao
  • ZhenJie Hong
Research Paper

Abstract

The planetary radio occultation technique is one of the earliest suggested and achieved methods to detect the planetary atmosphere, and has been conducted by almost every deep space planetary probe. The principles, modules, inversion results and primary analysis of the SHAO Planetary Occultation observation Processing system (SPOPs) are presented in this paper. Utilizing open-loop and closed-loop Doppler residual data of the Mars Express radio occultation experiment provided by ESA PSA and NASA PDS, the temperature, pressure, molecular number density profiles of Martian atmosphere and electron density profiles of the ionosphere are successfully retrieved, and the results are validated by the released radio science level 04 products of the ESA MaRS group. This system can also process the atmosphere radio occultation observations of other planets and theirs natural satellites. The implementation of the planetary radio occultation technique is of significance to China’s YH-1 Mars exploration project, as well as for future planetary exploration missions from China.

Keywords

radio occultation residual Doppler planetary atmosphere ionosphere inversion 

References

  1. 1.
    Asmar S W, Renzetti N A. The Deep Space Network as an Instrument for Radio Science Research. Pasadena: JPL Publication, 1993. 80–93Google Scholar
  2. 2.
    Kliore A J, Hamilton T W, Cain D L. Determination of Some Physical Properties of the Atmosphere of Mars From Changes in the Doppler Signal of a Spacecraft on an Earth Occultation Trajectory. Pasadena: JPL Publication, 1964. 32–674Google Scholar
  3. 3.
    Kliore A J, Cain D L, Levy G S, et al. Occultation experiment: results of the first direct measurement of Mars’ atmosphere and ionosphere. Science, 1965, 149: 1243–1248ADSCrossRefGoogle Scholar
  4. 4.
    Fjeldbo G, Eshleman V R. The atmosphere of Mars analyzed by integral inversion of the Mariner IV occultation data. Planet. Space Sci, 1968, 16: 1035–1059ADSCrossRefGoogle Scholar
  5. 5.
    Fjeldbo G, Kliore A J, Eshleman V R. The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments. Astron J, 1971, 76: 123–140ADSCrossRefGoogle Scholar
  6. 6.
    Kliore A J, Levy G S, Cain D L, et al. Atmosphere and ionosphere of Venus from the Mariner V S-band radio occultation measurement. Science, 1967, 158: 1683–1689ADSCrossRefGoogle Scholar
  7. 7.
    Kliore A J, Fjeldbo G, Seidel B L, et al. Mariners 6 and 7: Radio occultation measurements of the atmosphere of Mars. Science, 1969, 166: 1393–1397ADSCrossRefGoogle Scholar
  8. 8.
    Kliore A J, Cain D L, Fjeldbo G, et al. The atmosphere of Mars from Mariner 9 radio occultation measurements. Icarus, 1972, 17: 484–516ADSCrossRefGoogle Scholar
  9. 9.
    Tyler G L, Almino G B, Hinson D P, et al. Radio science investigations with Mars observer. J Geophys Res, 1992, 97: 7759–7779ADSCrossRefGoogle Scholar
  10. 10.
    Cahoy K L, Hinson D P, Tyler G L. Radio science measurements of atmospheric refractivity with Mars global surveyor. J Geophys Res, 2006, 111: E05003, doi:10.1029/2005JE002634CrossRefGoogle Scholar
  11. 11.
    Hinson D P, Wilson R J. Temperature inversions, thermal tides, and water ice clouds in the Martian tropics. J Geophys Res, 2004, 109: E01002, doi:10.1029/2003JE002129CrossRefGoogle Scholar
  12. 12.
    Pätzold M, Tellmann S, Haeusler B, et al. A Sporadic third layer in the ionosphere of Mars. Science, 2005, 310: 837–839ADSCrossRefGoogle Scholar
  13. 13.
    Howard H T, Tyler G L, Esposito P B, et al. Mercury: Results on mass, radius, ionosphere from Mariner 10 dual-frequency radio signals. Science, 1974a, 185:179–180ADSCrossRefGoogle Scholar
  14. 14.
    Fjeldbo G, Kliore A, Sweetnam D, et al. The occultation of Mariner 10 by Mercury. Icarus, 1976, 29: 439–444ADSCrossRefGoogle Scholar
  15. 15.
    Howard H T, Tyler G L, Fjeldbo G, et al. Venus: Mass, gravity field, atmosphere and ionosphere as measured by the Mariner 10 dual-frequency radio system. Science, 1974b, 183: 1297–1301ADSCrossRefGoogle Scholar
  16. 16.
    Kliore A J, Fjeldbo G, Seidel B L, et al. The atmosphere of Jupiter from Pioneer 11 s-band occultation experiment: Preliminary results. Science, 1975, 188: 474–476ADSCrossRefGoogle Scholar
  17. 17.
    Kliore A J, Woo R, Armstrong J W, et al. The polar ionosphere of venus near the terminator from early pioneer venus orbiter radio occultation. Science, 1979a, 203: 765–768ADSCrossRefGoogle Scholar
  18. 18.
    Kliore A J, Patel I R, Nagy A F, et al. Initial observations of the nightside ionosphere of venus form pioneer venus orbiter radio occultations. Science, 1979b, 205: 99–102ADSCrossRefGoogle Scholar
  19. 19.
    Lindal G F. The atmosphere of Neptune: An analysis of radio occultation data acquired with Voyager 2. Astron J, 1992, 103: 967–982ADSCrossRefGoogle Scholar
  20. 20.
    Tyler G L, Sweetnam D N, Anderson J D, et al. Voyager radio science observations of Neptune and Triton. Science, 1989, 246: 1466–1473ADSCrossRefGoogle Scholar
  21. 21.
    Hinson D P, Twicken J D, Karayel E T. Jupiter’s ionosphere: New results from the first Voyager 2 radio occultation measurements. J Geophys Res, 1998, 103: 9505–9520ADSCrossRefGoogle Scholar
  22. 22.
    Tyler G L. Radio propagation experiments in the outer solar system with Voyager. Proc IEEE, 1987, 75: 1404–1431ADSCrossRefGoogle Scholar
  23. 23.
    Hinson D P, Flasar F M, Kliore A J, et al. Jupiter’s ionosphere: Results from the first Galileo radio occultation experiment. Geophys Res Lett, 1997, 24: 2107–2110ADSCrossRefGoogle Scholar
  24. 24.
    Bird M K, Asmar S W, Edenhofer P, et al. The structure of Jupiter’s Io plasma torus inferred from Ulysses radio occultation observations. Planet Space Sci, 1993, 41: 999–1010ADSCrossRefGoogle Scholar
  25. 25.
    Bougher S W, Engel S, Hinson D P, et al. MGS Radio Science electron density profiles: Interannual variability and implications. J Geophys Res, 2004, 109: E03010, doi:10.1029/2003JE002154CrossRefGoogle Scholar
  26. 26.
    Hinson D P, Paetzold M, Wilson R J, et al. Radio occultation measurements of transient eddies in the northern hemisphere of Mars. J Geophys Res, 2006, 111: E05002, doi: 10.1029/2005JE002612CrossRefGoogle Scholar
  27. 27.
    Hinson D P. Radio occultation measurements and MGCM simulations of Kelvin waves on Mars. ICARUS, 2008, 193: 125–138ADSCrossRefGoogle Scholar
  28. 28.
    Krymskii A M, Breus T K, Ness N F, et al. Effect of crustal magnetic fields on the near terminator ionosphere at Mars: Comparison of in situ magnetic field measurements with the data of radio science experiments on board Mars global surveyor. J Geophys Res, 2003, 108: 1431–1443, doi: 10.1029/2002JA009662CrossRefGoogle Scholar
  29. 29.
    Fjeldbo G, Eshleman V R, Garriott O K, et al. The two-frequency bistatic radio-occulation method for the study of planetary ionospheres. J Geophys Res, 1965, 70: 3701–3709ADSCrossRefGoogle Scholar
  30. 30.
    Han T T, Mao X F, Zahng S J, et al. The time and coordinate systems of Earth-based Mars atmosphere occultation (in chinese). Ann Shanghai Astron Observatory, 2009, 30: 22–32Google Scholar
  31. 31.
    Zhang S J, Ping J S, Hong Z J, et al. Detection of Martian atmosphere and ionosphere using spacecraft-earth radio occultation technique (in chinese). Physics, 2009, 38: 467–473Google Scholar
  32. 32.
    Allen C W. Astrophysical Quantities. 4th ed. London: The Athlone Press, 1999. 13–22Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • SuJun Zhang
    • 1
  • JinSong Ping
    • 1
  • TingTing Han
    • 1
    • 2
  • XiaoFei Mao
    • 3
  • ZhenJie Hong
    • 3
  1. 1.Shanghai Astronomical ObservatoryChinese Academy of SciencesShanghaiChina
  2. 2.Graduate Unirersity of Chinese Academy of SciencesBeijingChina
  3. 3.College of Mathematics and Information Science of Wenzhou UniversityWenzhouChina

Personalised recommendations