Quantum model simulations of attosecond electron diffraction

Review

Abstract

Ultrafast diffraction with free attosecond electron pulses promises insight into the four-dimensional motion of charge density in atoms, molecules and condensed matter. Here we consider the quantum dynamics of the electron-electron scattering process on an attosecond time scale. By numerically solving the time-dependent two-electron Schrödinger equation, we investigate the interaction of an incoming keV-range electron wavepacket by the bound electron of an aligned H2+ molecule, using a one-dimensional model. Our findings reveal the ratio of elastic to inelastic contributions, the role of exchange interaction, and the influence of the molecular electron density to diffraction. Momentum transfer during the scattering process, from the incoming to the bound electron mediated by the nuclei, leaves the bound electron in a state of coherent oscillation with attosecond recurrences. Entanglement causes related state-selective oscillations in the phase shift of the scattered electron. Two scenarios of distinguishable and indistinguishable free and bound electrons yield equivalent results, irrespective of the electronic spins. This suggests to employ the scenario of distinguishable electrons, which is computationally less demanding. Our findings support the possibility of using electron diffraction for imaging the motion of charge density, but also suggest the application of free electron pulses for inducing attosecond dynamics.

Keywords

ultrafast electron diffraction scattering theory attosecond dynamics entanglement coherence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zewail AH. In: Frängsmyr T, ed. Les Prix Nobel: The Nobel Prices 1999. Stockholm: Almqvist & Wiksell, 2000. 110Google Scholar
  2. 2.
    Baum P, Yang D S, Zewail A H. 4D visualization of transitional structures in phase transformations by electron diffraction. Science, 2007, 318: 788–792CrossRefADSGoogle Scholar
  3. 3.
    Remacle F, Levine R D. An electronic time scale in chemistry. Proc Natl Acad Sci USA, 2006, 103: 6793–6798CrossRefADSGoogle Scholar
  4. 4.
    Kuleff A I, Cederbaum L S. Tracing ultrafast interatomic electronic decay processes in real time and space. Phys Rev Lett, 2007, 98: 083201CrossRefADSGoogle Scholar
  5. 5.
    Geppert D, von den Hoff P, de Vivie-Riedle R. Electron dynamics in molecules: A new combination of nuclear quantum dynamics and electronic structure theory. J Phys B, 2008, 41: 074006CrossRefADSGoogle Scholar
  6. 6.
    Bandrauk A D, Chelkowski S, Corkum P B, et al. Attosecond photoionization of a coherent superposition of bound and dissociative molecular states: Effect of nuclear motion. J Phys B, 2009, 42: 134001CrossRefADSGoogle Scholar
  7. 7.
    Bandrauk A D, Manz J, Vrakking M. Attosecond molecular dynamics, preface. Chem Phys, 2009, 366: 1CrossRefADSGoogle Scholar
  8. 8.
    Baum P, Zewail A H. 4D attosecond imaging with free electrons: Diffraction methods and potential applications. Chem Phys, 2009, 366: 2–8CrossRefADSGoogle Scholar
  9. 9.
    Farrell J P, McFarland B K, Gühr M, et al. Relation of high harmonic spectra to electronic structure in N2. Chem Phys, 2009, 366: 15–21CrossRefADSGoogle Scholar
  10. 10.
    Lock R M, Zhou X, Lia W, et al. Measuring the intensity and phase of high-order harmonic emission from aligned molecules. Chem Phys, 2009, 366: 22–32CrossRefADSGoogle Scholar
  11. 11.
    Trallero-Herrero C, Schmidt B E, Shiner A D, et al. High harmonic generation in ethylene with infrared pulses. Chem Phys, 2009, 366: 33–36CrossRefADSGoogle Scholar
  12. 12.
    Sukiasyan S, McDonald C, Van Vlack C, et al. Correlated few-electron dynamics in intense laser fields. Chem Phys, 2009, 366: 37–45CrossRefADSGoogle Scholar
  13. 13.
    Kato T, Kono H. Time-dependent multiconfiguration theory for ultrafast electronic dynamics of molecules in an intense laser field: Electron correlation and energy redistribution among natural orbitals. Chem Phys, 2009, 366: 46–53CrossRefADSGoogle Scholar
  14. 14.
    Chirilă C C, Lein M. High-order harmonic generation in vibrating twoelectron molecules. Chem Phys, 2009, 366: 54–57CrossRefADSGoogle Scholar
  15. 15.
    Morales F, Pérez-Torres J F, Sanz-Vicario J L, et al. Probing H2 quantum autoionization dynamics with XUV atto and femtosecond laser pulses. Chem Phys, 2009, 366: 58–63CrossRefADSGoogle Scholar
  16. 16.
    Nguyen-Dang T T, Peters M, Wang S M, et al. Toward ab-initio simulations of multiple ionization processes in intense laser field. Chem Phys, 2009, 366: 71–84CrossRefADSGoogle Scholar
  17. 17.
    Milošević D B, Busuladžić M, Gazibegović-Busuladžić A, et al. Strongfield approximation for high-order above-threshold ionization of randomly oriented diatomic molecules. Chem Phys, 2009, 366: 85–90CrossRefGoogle Scholar
  18. 18.
    Son S K, Chu S I. Theoretical study of orientation-dependent multiphoton ionization of polyatomic molecules in intense ultrashort laser fields: A new time-dependent Voronoi-cell finite difference method. Chem Phys, 2009, 366: 91–102CrossRefADSGoogle Scholar
  19. 19.
    Yonehara T, Takatsuka K. Characterization of electron-deficient chemical bonding of diborane with attosecond electron wavepacket dynamics and laser response. Chem Phys, 2009, 366: 115–128CrossRefADSGoogle Scholar
  20. 20.
    Periyasamy G, Levine R D, Remacle F. Electronic wave packet motion in water dimer cation: A many electron description. Chem Phys, 2009, 366: 129–138CrossRefADSGoogle Scholar
  21. 21.
    von den Hoff P, Znakovskaya I, Kling M F, et al. Attosecond control of the dissociative ionization via electron localization: A comparison between D2 and CO. Chem Phys, 2009, 366: 139–147CrossRefADSGoogle Scholar
  22. 22.
    Zewail A H. 4D ultrafast electron diffraction, crystallography, and microscopy. Annu Rev Phys Chem, 2006, 57: 65–103CrossRefADSGoogle Scholar
  23. 23.
    Gedik N, Yang D S, Logvenov G, et al. Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography. Science 2007, 316: 425–429CrossRefADSGoogle Scholar
  24. 24.
    Carbone F, Baum P, Rudolf P, et al. Structural preablation dynamics of graphite observed by ultrafast electron crystallography. Phys Rev Lett, 2008, 100: 035501CrossRefADSGoogle Scholar
  25. 25.
    Yang D S, Lao C, Zewail A H. 4D electron diffraction reveals correlated unidirectional behavior in zinc oxide nanowires. Science 2008, 321: 1660–1664CrossRefADSGoogle Scholar
  26. 26.
    Ruan C Y, Murooka Y, Raman R K, et al. Dynamics of size-selected gold nanoparticles studied by ultrafast electron nanocrystallography. Nano Lett, 2007, 7: 1290–1296CrossRefADSGoogle Scholar
  27. 27.
    Chen S, Seidel M T, Zewail A H. Atomic-scale dynamical structures of fatty acid bilayers observed by ultrafast electron crystallography. Proc Natl Acad Sci USA, 2005, 102: 8854–8859CrossRefADSGoogle Scholar
  28. 28.
    Gahlmann A, Park S T, Zewail A H. Structure of isolated biomolecules by electron diffraction-laser desorption: Uracil and guanine. J Am Chem Soc, 2009, 131: 2806–2809CrossRefGoogle Scholar
  29. 29.
    Siwick B J, Dwyer J R, Jordan R E, et al. An atomic-level view of melting using femtosecond electron diffraction. Science 2003, 302: 1382–1385CrossRefADSGoogle Scholar
  30. 30.
    Harb M, Ernstorfer R, Hebeisen C T, et al. Electronically driven structure changes of Si captured by femtosecond electron diffraction. Phys Rev Lett, 2008, 100: 155504CrossRefADSGoogle Scholar
  31. 31.
    Wang X, Nie S H, Li J J, et al. Electronic Grüneisen parameter and thermal expansion in ferromagnetic transition metal. Appl Phys Lett, 2008, 92: 121918CrossRefADSGoogle Scholar
  32. 32.
    Reckenthaeler P, Centurion M, Fuß W, et al. Time-resolved electron diffraction from selectively aligned molecules. Phys Rev Lett, 2009, 102: 213001CrossRefADSGoogle Scholar
  33. 33.
    Zewail A H, Thomas J M. 4D Electron Microscopy. London: Imperial College Press, 2009CrossRefGoogle Scholar
  34. 34.
    Park H S, Kwon O H, Baskin J S, et al. Direct observation of martensitic phase-transformation dynamics in Iron by 4D single-pulse electron microscopy. Nano Lett, 2009, 9: 3954–3962CrossRefGoogle Scholar
  35. 35.
    Barwick B, Park H S, Kwon O H, et al. 4D imaging of transient structures and morphologies in ultrafast electron microscopy. Science, 2008, 322: 1227–1231CrossRefADSGoogle Scholar
  36. 36.
    Yurtsever A, Zewail A H. 4D nanoscale diffraction observed by convergent-beam ultrafast electron microscopy. Science, 2009, 326: 708–712CrossRefADSGoogle Scholar
  37. 37.
    Carbone F, Kwon O H, Zewail A H. Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy. Science, 2009, 325: 181–184CrossRefADSGoogle Scholar
  38. 38.
    Breidbach J, Cederbaum L S. Universal attosecond response to the removal of an electron. Phys Rev Lett, 2005, 94: 033901CrossRefADSGoogle Scholar
  39. 39.
    Baum P, Zewail A H. Attosecond electron pulses for 4D diffraction and microscopy. Proc Natl Acad Sci USA, 2007, 104: 18409–18414CrossRefADSGoogle Scholar
  40. 40.
    Hilbert S A, Uiterwaal C, Barwick B, et al. Temporal lenses for attosecond and femtosecond electron pulses. Proc Natl Acad Sci USA, 2009, 106: 10558–10563CrossRefADSGoogle Scholar
  41. 41.
    Krausz F, Ivanov M. Attosecond physics. Rev Mod Phys, 2009, 81: 163–234CrossRefADSGoogle Scholar
  42. 42.
    Corkum P B, Krausz F. Attosecond science. Nature Phys, 2007, 3: 381–387CrossRefADSGoogle Scholar
  43. 43.
    Illenberger E, Momigny J. Gaseous Molecular Ions. An Introduction to Elementary Processes Induced by Ionization. New York: Springer, 1992Google Scholar
  44. 44.
    Gertitschke P L, Domcke W. Time-dependent wave-packet description of dissociative electron attachment. Phys Rev A, 1993, 47: 1031–1044CrossRefADSGoogle Scholar
  45. 45.
    Lehr L, Manz J, Miller WH. A classical approach to resonant low energy electron scattering off molecules: Application to the a1-shape resonance of CF3Cl. Chem Phys, 1997, 214: 301–312CrossRefGoogle Scholar
  46. 46.
    Harvey A G, Tennyson J. Electron re-scattering from H2 and CO2 using R-matrix techniques. J Mod Opt, 2007, 54: 1099–1106CrossRefADSGoogle Scholar
  47. 47.
    Harvey A G, Tennyson J. Electron re-scattering from aligned linear molecules using the R-matrix method. J Phys B-A Mol Opt Phys, 2009, 42: 095101CrossRefADSGoogle Scholar
  48. 48.
    Burke P G, Tennyson J. R-matrix theory of electron molecule scattering. Mol Phys, 2005, 103: 2537–2548CrossRefADSGoogle Scholar
  49. 49.
    Gorfinkiel J D, Faure A, Taioli S, et al. Electron-molecule collisions at low and intermediate energies using the R-matrix method. Eur Phys J D, 2005, 35: 231–237CrossRefADSGoogle Scholar
  50. 50.
    Blanco F, Garcia G. Screening corrections for calculation of electron scattering differential cross sections from polyatomic molecules. Phys Lett A, 2004, 330: 230–237MATHCrossRefADSGoogle Scholar
  51. 51.
    Iga I, Lee M T, Bonham R A. Role of the intramolecular multiple scattering on electron diffraction from nitrogen molecule in the intermediate energy range. J Mol Struc: Theochem, 1999, 468: 241–251CrossRefGoogle Scholar
  52. 52.
    Zuo T, Bandrauk A D, Corkum P B. Laser-induced electron diffraction: A new tool for probing ultrafast molecular dynamics. Chem Phys Lett, 1996, 259: 313–320CrossRefADSGoogle Scholar
  53. 53.
    Spanner M, Smirnova O, Corkum P B, et al. Reading diffraction images in strong field ionization of diatomic molecules. J Phys B, 2004, 37: L243–L250CrossRefADSGoogle Scholar
  54. 54.
    Yurchenko S N, Patchkovskii S, Litvinyuk I V, et al. Laser-induced interference, focusing, and diffraction of rescattering molecular photoelectrons. Phys Rev Lett, 2004, 93: 223003CrossRefADSGoogle Scholar
  55. 55.
    Hu S X, Collins L A. Imaging molecular structures by electron diffraction using an intense few-cycle pulse. Phys Rev Lett, 2005, 94: 073004CrossRefADSGoogle Scholar
  56. 56.
    Meckel M, Comtois D, Zeidler D, et al. Laser-induced electron tunneling and diffraction. Science, 2008, 320: 1478–1482CrossRefADSGoogle Scholar
  57. 57.
    Morishita T, Okunishi M, Shimada K, et al. Retrieval of experimental differential electron-ion elastic scattering cross sections from high-energy ATI spectra of rare gas atoms by infrared lasers. J Phys B: At Mol Opt Phys, 2009, 42: 105205CrossRefADSGoogle Scholar
  58. 58.
    Bandrauk A D, Chelkowski S, Diestler D J, et al. Quantum-mechanical models for photo-ionization: Uni-directional electron re-scattering by a laser pulse. Int J Mass Spec, 2008, 277: 189–196CrossRefGoogle Scholar
  59. 59.
    Bandrauk A D, Manz J, Yuan K J. Electron wavepacket phases in ionization and rescattering processes by intense laser pulses. Laser Phys, 2009, 19: 1559–1573CrossRefADSGoogle Scholar
  60. 60.
    Corkum P B. Plasma perspective on strong field multiphoton ionization. Phys Rev Lett, 1993, 71: 1994–1997CrossRefADSGoogle Scholar
  61. 61.
    Bandrauk A D, Lu H. Laser-induced electron recollision in H2 and electron correlation. Phys Rev A, 2005, 72: 023408CrossRefADSGoogle Scholar
  62. 62.
    Bandrauk A D, Chelkowski S, Kawai S, et al. Effect of nuclear motion on molecular high-order harmonics and on generation of attosecond pulses in intense laser pulses. Phys Rev Lett, 2008, 101: 153901CrossRefADSGoogle Scholar
  63. 63.
    Walters Z B, Tonzanic S, Greene C H. Vibrational interference of Raman and high harmonic generation pathways. Chem Phys, 2009, 366: 103–114CrossRefADSGoogle Scholar
  64. 64.
    Smirnova O, Mairesse Y, Patchkovskii S, et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature, 2009, 460: 972–977CrossRefADSGoogle Scholar
  65. 65.
    Morishita T, Le A T, Chen Z, et al. Accurate retrieval of structural information from laser-induced photoelectron and high-order harmonic spectra by few-cycle laser pulses. Phys Rev Lett, 2008, 100: 013903CrossRefADSGoogle Scholar
  66. 66.
    Bandrauk A D, Chelkowski S, Diestler D J, et al. Quantum simulation of high-order harmonic spectra of the hydrogen atom. Phys Rev A, 2009, 79: 023403CrossRefADSGoogle Scholar
  67. 67.
    Hu S X, Collins L A, Schneider B I. Attosecond photoelectron microscopy of H2+. Phys Rev A, 2009, 80: 023426CrossRefADSGoogle Scholar
  68. 68.
    Yuan K J, Lu H, Bandrauk A D. LIED — Laser induced electron diffraction in H2 with linear and circular polarization ultrashort XUV laser pulses. Phys Rev A, 2009, 80: 061403CrossRefADSGoogle Scholar
  69. 69.
    Dörner R, Bräuning H, Jagutzki O, et al. Double photoionization of spatially aligned D2. Phys Rev Lett, 1998, 81: 5776–5779CrossRefADSGoogle Scholar
  70. 70.
    Fernández J, Yip F L, Rescigno T N, et al. Two-center effects in onephoton single ionization of H2+, H2, and Li2+ with circularly polarized light. Phys Rev A, 2009, 79: 043409CrossRefADSGoogle Scholar
  71. 71.
    Barth I, Manz J, Paramonov G K. Time-dependent extension of Koopmans’ picture for ionisation by a laser pulse: Application to H(B 1Σu+). Mol Phys, 2008, 106: 467–483CrossRefADSGoogle Scholar
  72. 72.
    Taylor J R. Scattering Theory—The Quantum Theory of Nonrelativistic Collisions. New York: John Wiley & Sons, 1972Google Scholar
  73. 73.
    Glaeser R M. Review: Electron crystallography: Present excitement, a nod to the past, anticipating the future. J Struct Biol, 1999, 128: 3–14CrossRefGoogle Scholar
  74. 74.
    Peng L M. Electron atomic scattering factors and scattering potentials of crystals. Micron, 1999, 30: 625–649CrossRefGoogle Scholar
  75. 75.
    Stapelfeldt H, Seideman T. Colloquium: Aligning molecules with strong laser pulses. Rev Mod Phys, 2003, 75: 543–557CrossRefADSGoogle Scholar
  76. 76.
    Filsinger F, Küpper J, Meijer G, et al. Quantum-state selection, alignment, and orientation of large molecules using static electric and laser fields. J Chem Phys, 2009, 131: 064309CrossRefADSGoogle Scholar
  77. 77.
    Heller E J, Manz J. Dissociation of symmetry-adapted local modes studied by FFT-propagation of bond-adapted wavefunctions. Z Phys D, 1989, 13: 281–288CrossRefADSGoogle Scholar
  78. 78.
    Peek J M. Eigenparameters of the 1s σg and 2p σu orbitals of H2+. J Chem Phys, 1965, 43: 3004CrossRefADSGoogle Scholar
  79. 79.
    Tannor D J. Introduction to Quantum Mechanics—A Time Dependent Perspective. USA: University Science Books, 2007Google Scholar
  80. 80.
    Bisseling R H, Kosloff R, Manz J. Dynamics of hyperspherical and local mode resonance decay studied by time dependent wave packet propagation. J Chem Phys, 1985, 83: 993–1004CrossRefADSGoogle Scholar
  81. 81.
    Feit M D, Fleck Jr J A, Steiger A. Solution of the Schrödinger equation by a spectral method. J Comp Phys, 1982, 47: 412–433MATHCrossRefMathSciNetADSGoogle Scholar
  82. 82.
    Feit M D, Fleck Jr J A. Solution of the Schrödinger equation by a spectral method II: Vibrational energy levels of triatomic molecules. J Chem Phys, 1983, 78: 301–308CrossRefADSGoogle Scholar
  83. 83.
    Leforestier C, Bisseling R, Cerjan C, et al. A comparison of different propagation schemes for the time dependent Schrödinger equation. J Comput Phys, 1991, 94: 59–80MATHCrossRefMathSciNetADSGoogle Scholar
  84. 84.
    Schmidt B, Lorenz U. WavePacket 4.6 (/4.7): A program package for quantum-mechanical wavepacket propagation and time-dependent spectroscopy. Available via http://wavepacket.sourceforge.net (2009)
  85. 85.
    Gonzalez-Lezana T, Rackham E J, Manolopoulos D E. Quantum reactive scattering with a transmission-free absorbing potential. J Chem Phys, 2004, 120: 2247–2254CrossRefADSGoogle Scholar
  86. 86.
    Press W H, Teukolsky S A, Vetterling W T, et al. Numerical Recipes in Fortran 90. USA: Cambridge University Press, 1996Google Scholar
  87. 87.
    Okuyama M, Takatsuka K. Electron flux in molecules induced by nuclear motion. Chem Phys Lett, 2009, 476: 109–115CrossRefADSGoogle Scholar
  88. 88.
    Barth I, Hege H C, Ikeda H, et al. Concerted quantum effects of electronic and nuclear fluxes in molecules. Chem Phys Lett, 2009, 481: 118–123CrossRefADSGoogle Scholar
  89. 89.
    Inokuti M. Inelastic collisions of fast charged particles with atoms and molecules—The Bethe theory revisited. Rev Mod Phys, 1971, 43: 297–347CrossRefADSGoogle Scholar
  90. 90.
    Jablonski A, Tanuma S, Powell C J. Modified predictive formula for the electron stopping power. J Appl Phys, 2008, 103: 063708CrossRefADSGoogle Scholar
  91. 91.
    Caprez A, Barwick B, Batelaan H. Macroscopic test of the Aharonov-Bohm effect. Phys Rev Lett, 2007, 99: 210401CrossRefADSGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Max-Planck-Institute of Quantum Optics, and Ludwig-Maximilians-Universität MünchenGarchingGermany
  2. 2.Freie Universität Berlin, Institut für Chemie und BiochemieBerlinGermany

Personalised recommendations