Science China Physics, Mechanics and Astronomy

, Volume 53, Issue 6, pp 1139–1143 | Cite as

Test mass charging simulation of ASTROD I due to solar energetic particles at 0.5 AU

Research Paper


Maintaining the geodesic motion of the test mass is vital to ASTROD I space mission. However, the electrostatic charging of the test mass due to cosmic rays and solar energetic particles will result in Coulomb and Lorentz forces and consequently influence the test mass motions. To estimate the size of these effects, a credible simulation of test mass charging processes is critically required. Using the GEANT4 software toolkit, we have modeled the charging processes and predict how the ASTROD I test mass will charge positively at a rate of 217370 e+/s, due to solar energetic particles (SEPs) at ∼ 0.5 AU caused by the largest SEPs event on 29, September, 1989. In addition to Monte Carlo uncertainty, an error of ±30% in the net charging rates was added to account for uncertainties in the spectra, physics and geometry models.


charging simulation ASTROD I GEANT4 solar energetic particles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ni W-T, Bao Y, Dittus H, et al. ASTROD I: Mission concept and Venus flybys. Acta Astronaut, 2006, 59: 598–607CrossRefADSGoogle Scholar
  2. 2.
    Ni W-T, Bao G, Bao Y, et al. ASTROD I, test of relativity, solar-system measurement and g-wave detection. J Korean Phys Soc, 2004, 45: S118–S123Google Scholar
  3. 3.
    Ni W-T, Araujo H, Bao G, et al. ASTROD and ASTROD I: Progress report. J Phys-Confer Ser 32, 2006: 154–160CrossRefADSGoogle Scholar
  4. 4.
    Bao G, Shaul D N A, Araújo H, et al. ASTROD I charging simulation and disturbances. 2007, arXiv:0704.3303Google Scholar
  5. 5.
    Bao G, Liu L, Shaul D N A, et al. Further computation of the test mass charging and disturbances in ASTROD I. Nucl Phys B, 2007, 166: 246–248CrossRefGoogle Scholar
  6. 6.
    Bao G, Ni W-T, Shaul D N A, et al. Further test mass charging simulations for ASTROD I. Int J Mod Phys D, 2008, 17: 965–983MATHCrossRefADSGoogle Scholar
  7. 7.
    Ni W-T. ASTROD and ASTROD I — Overview and progress. Int J Mod Phys D, 2008, 17: 921–940MATHCrossRefADSGoogle Scholar
  8. 8.
    Ni W-T, Xia Y, Li G. Orbit design and orbit simulation for ASTROD I for the 2012 and 2013 launch windows. electronic proceedings of the 15th Workshop on JAXA Astrodynamics and Flight Mechanics, Kanagawa, Japan, 2005, July 25–26Google Scholar
  9. 9.
    Xia Y, Tang J C, Ni W-T, et al. Orbit design and simulation for ASTROD I. Publ Purple Mountain Observ, 2004, 23: 63–86Google Scholar
  10. 10.
    Forbush S E. Three unusual cosmic-ray increases possibly due to charged particles from the Sun. Phys Rev, 1946, 70: 771–772CrossRefADSGoogle Scholar
  11. 11.
    Angelis G De, Badavi F F, Clem J M, et al. Modeling of the lunar radiation environment. Nucl Phys B, 2007, 166: 169–183CrossRefGoogle Scholar
  12. 12.
    Angelis G de, Badavi F F, Blattnig S R, et al. Modeling of the martian environment for radiation analysis. Nucl Phys B, 2007, 166: 169–183CrossRefGoogle Scholar
  13. 13.
    Vocca H, Grimani C, Amico P, et al. Simulation of the charging process of the LISA test masses due to solar particles. Class Quant Grav, 2005, 22: S319–S325CrossRefADSGoogle Scholar
  14. 14.
    Xapsos M A, Walters R J, Summers G P, et al. Characterizing solar proton energy spectra for radiation effects applications. IEEE Trans Nucl Sci, 2000, 47: 2218–2223CrossRefADSGoogle Scholar
  15. 15.
    Dyer C S, Lei F, Clucas S N, et al. Solar particle enhancements of single-event effect rates at aircraft altitudes. IEEE Trans Nucl Sci, 2003, 50: 2038–2045CrossRefADSGoogle Scholar
  16. 16.
    Araújo H, Wass P, Shaul D N A, et al. Detailed calculation of test-mass charging in the LISA mission. Astropart Phys, 2005, 22: 451–469CrossRefADSGoogle Scholar
  17. 17.
    Liu L, Dong Y, Bao G, et al. Simulation of ASTROD I charging due to solar energetic particles and interplanetary electrons. J Adv Space Res, 2009, doi:10.1016/j.asr.2009.09.009Google Scholar
  18. 18.
    Shiomi S, Ni W-T. Acceleration disturbances and requirements for ASTROD I. Class Quant Grav, 2006, 23: 4415–4432MATHCrossRefADSGoogle Scholar
  19. 19.
    Shaul D N A, Sumner T J, Araujo H M, et al. Unwanted, coherent signals in the LISA bandwidth due to test mass charging. Class Quant Grav, 2004, 21: S647–S651CrossRefADSGoogle Scholar
  20. 20.
    Shaul D N A, Araujo H M, Rochester G K, et al. Evaluation of disturbances due to test mass charging for LISA. Class Quant Grav, 2005, 22: S297–S309CrossRefADSGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Purple Mountain ObservatoryChinese Academy of SciencesNanjingChina

Personalised recommendations