Science China Physics, Mechanics and Astronomy

, Volume 53, Issue 6, pp 1124–1129 | Cite as

Searching for the earliest galaxies in the 21 cm forest

Research Paper


We use a model developed by Xu, Ferrara, and Chen (Mon Not Roy Astron Soc, submitted) to compute the 21 cm line absorption signatures imprinted by star-forming dwarf galaxies (DGs) and starless minihalos (MHs). The method, based on a statistical comparison of the equivalent width (Wν) distribution and flux correlation function, allows us to derive a simple selection criteria for candidate DGs at very high (z ⩽ 8) redshift. We find that ≈18% of the total number of DGs along a line of sight to a target radio source (GRB or quasar) can be identified by the condition Wν < 0; these objects correspond to the high-mass tail of the DG distribution at high redshift, and are embedded in large HII regions. The criterion Wν > 0.37 kHz instead selects ≈11% of MHs. Selected candidate DGs could later be re-observed in the near-IR by the JWST with high efficiency, thus providing a direct probe of the most likely reionization sources.


cosmology dwarf galaxies high-redshift galaxies radio absorption lines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bunker A, Stanway E, Ellis R, et al. Galaxies at high redshift and reionization. ASP Conference Series, 2009, Vol. 395, arXiv:0909.1565Google Scholar
  2. 2.
    Bouwens R J, Illingworth G D, Labbé I, et al. Constraints on the first galaxies: z∼10 galaxy candidates from HST WFC3/IR. Nature, submitted, arXiv:0912.4263Google Scholar
  3. 3.
    Choudhury T R, Ferrara A. Searching for the reionization sources. Mon Not Roy Astron Soc, 2007, 380: L6–L10CrossRefADSGoogle Scholar
  4. 4.
    Furlanetto S R, Oh S P, Briggs F H. Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe. Phys Rep, 2006, 433: 181–301CrossRefADSGoogle Scholar
  5. 5.
    Madau P, Meiksin A, Rees M J. 21 Centimeter tomography of the intergalactic medium at high redshift. Astrophys J, 1997, 475: 429–444CrossRefADSGoogle Scholar
  6. 6.
    Tozzi P, Madau P, Meiksin A, et al. Radio signatures of h i at high redshift: Mapping the end of the “Dark Ages”. Astrophys J, 2000, 528: 597–606CrossRefADSGoogle Scholar
  7. 7.
    Xu Y, Chen X, Fan Z, et al. The 21 cm forest as a probe of the reionization and the temperature of the intergalactic medium. Astrophys J, 2009, 704: 1396–1404CrossRefADSGoogle Scholar
  8. 8.
    Carilli C L, Gnedin N Y, Owen F. H I 21 centimeter absorption beyond the Epoch of Reionization. Astrophys J, 2002, 577: 22–30CrossRefADSGoogle Scholar
  9. 9.
    Gnedin N Y. Cosmological reionization by stellar sources. Astrophys J, 2000, 535: 530–554CrossRefADSGoogle Scholar
  10. 10.
    Furlanetto S R, Loeb A. The 21 centimeter forest: Radio absorption spectra as probes of minihalos before reionization. Astrophys J, 2002, 579: 1–9CrossRefADSGoogle Scholar
  11. 11.
    Furlanetto S R. The 21-cm forest. Mon Not Roy Astron Soc, 2006, 370: 1867–1875ADSGoogle Scholar
  12. 12.
    Xu Y, Ferrara A, Chen X. The earliest galaxies seen in 21 cm line absorption. Mon Not Roy Astron Soc, 2010, submittedGoogle Scholar
  13. 13.
    Komatsu E, Dunkley J, Nolta M R, et al. Five-year Wilkinson microwave anisotropy probe observations: Cosmological interpretation. Astrophys J Suppl Ser, 2009, 180: 330–376CrossRefADSGoogle Scholar
  14. 14.
    Sheth R K, Tormen G. Large-scale bias and the peak background split. Mon Not Roy Astron Soc, 1999, 308: 119–126CrossRefADSGoogle Scholar
  15. 15.
    Abel T, Bryan G L, Norman M L. The formation and fragmentation of primordial molecular clouds. Astrophys J, 2000, 540: 39–44CrossRefADSGoogle Scholar
  16. 16.
    O’shea B W, Norman M L. Population III star formation in a ΛCDM universe. I. The effect of formation redshift and environment on protostellar accretion rate. Astrophys J, 2007, 654: 66–92Google Scholar
  17. 17.
    Navarro J F, Frenk C S, White S D M. A universal density profile from Hierarchical clustering. Astrophys J, 1997, 490: 493–508CrossRefADSGoogle Scholar
  18. 18.
    Gao L, White S D M, Jenkins A, et al. Early structure in ΛCDM. Mon Not Roy Astron Soc, 2005, 363: 379–392ADSGoogle Scholar
  19. 19.
    Barkana R. A model for infall around virialized haloes. Mon Not Roy Astron Soc, 2004, 347: 59–66CrossRefADSGoogle Scholar
  20. 20.
    Tegmark M, Silk J, Rees M J, et al. How small were the first cosmological objects? Astrophys J, 1997, 474: 1–12CrossRefADSGoogle Scholar
  21. 21.
    Lacey C, Cole S. Merger rates in hierarchical models of galaxy formation. Mon Not Roy Astron Soc, 1993, 262: 627–649ADSGoogle Scholar
  22. 22.
    Salvadori S, Ferrara A. Ultra faint dwarfs: Probing early cosmic star formation. Mon Not Roy Astron Soc, 2009, 395: L6–L10CrossRefADSGoogle Scholar
  23. 23.
    Schaerer D. On the properties of massive Population III stars and metal-free stellar populations. Astron Astrophys, 2002, 382: 28–42CrossRefADSGoogle Scholar
  24. 24.
    Schaerer D. The transition from Population III to normal galaxies: Lyalpha and He II emission and the ionising properties of high redshift starburst galaxies. Astron Astrophys, 2003, 397: 527–538CrossRefADSGoogle Scholar
  25. 25.
    Gallerani S, Ferrara A, Fan X, et al. Glimpsing through the high-redshift neutral hydrogen fog. Mon Not Roy Astron Soc, 2008, 386: 359–369CrossRefADSGoogle Scholar
  26. 26.
    Field G B. An attempt to observe neutral hydrogen between the galaxies. Astrophys J, 1959, 129: 525–535CrossRefADSGoogle Scholar
  27. 27.
    Field G B. The spin temperature of intergalactic neutral hydrogen. Astrophys J, 1959, 129: 536–550CrossRefADSGoogle Scholar
  28. 28.
    Wouthuysen S A. On the excitation mechanism of the 21-cm (radiofrequency) interstellar hydrogen emission line. Astron J, 1952, 57: 31–32CrossRefGoogle Scholar
  29. 29.
    Sheth R K, van de Weygaert R. A hierarchy of voids: Much ado about nothing. Mon Not Roy Astron Soc, 2004, 350: 517–538CrossRefADSGoogle Scholar
  30. 30.
    Shang C, Crotts A, Haiman Z. Constraints on the abundance of highly ionized protocluster regions from the absence of large voids in the Lyα forest. Astrophys J, 2007, 671: 136–145CrossRefADSGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Astronomy, School of PhysicsPeking UniversityBeijingChina
  2. 2.SISSA/International School for Advanced StudiesTriesteItaly
  3. 3.Scuola Normale SuperiorePisaItaly
  4. 4.National Astronomical Observatory of ChinaCASBeijingChina
  5. 5.Center for High Energy PhysicsPeking UniversityBeijingChina

Personalised recommendations