Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution

  • Liang Hao
  • JunLin Li
  • GuiLu Long
Research Paper


A detailed analysis has showed that the quantum secret sharing protocol based on the Grover algorithm (Phys Rev A, 2003, 68: 022306) is insecure. A dishonest receiver may obtain the full information without being detected. A quantum secret-sharing protocol is presents here, which mends the security loophole of the original secret-sharing protocol, and doubles the information capacity.


quantum secret sharing Grover algorithm quantum cryptography quantum search algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schneier B. Applied Cryptography: Protocols, Algorithms, and Source Code in C. 2nd ed. New York: John Wiley and Sons, Inc., 1996. 70zbMATHGoogle Scholar
  2. 2.
    Gruska J. Foundations of Computing. London: Thomson Computer Press, 1997. 504Google Scholar
  3. 3.
    Hillery M, Bu E K V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1832CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Phys Rev Lett, 1999, 83: 648–651CrossRefADSGoogle Scholar
  5. 5.
    Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 59: 162–168CrossRefADSGoogle Scholar
  6. 6.
    Gottesman D. Theory of quantum secret sharing. Phys Rev A, 2000, 61: 042311CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Bandyopadhyay S. Teleportation and secret sharing with pure entangled states. Phys Rev A, 2000, 62: 012308CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secret-sharing schemes. Phys Rev A, 2004, 69: 052307CrossRefADSGoogle Scholar
  9. 9.
    Cabello A. N-particle N-level singlet states: Some properties and applications. Phys Rev Lett, 2002, 89: 100402CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Deng F G, Zhou H Y, Long G L. Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys Lett A, 2005, 337: 329–334zbMATHCrossRefADSGoogle Scholar
  11. 11.
    Chen P, Deng F G, Long G L. High-dimension multiparty quantum secret sharing scheme with Einstein-Podolsky-Rosen pairs. Chin Phys, 2006, 15: 2228–2235CrossRefADSGoogle Scholar
  12. 12.
    Song J, Zhang S. Secure quantum secret sharing based on reusable GHZ states as secure carriers. Chin Phys Lett, 2006, 23(6): 1383–1836CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Wang X, Liu YM, Han L F, et al. Multiparty quantum secret of secure direct communication with high-dimensional quantum superdense coding. Int J Quant Inform, 2008, 6: 1155–1163zbMATHCrossRefGoogle Scholar
  14. 14.
    Gao T, Yan F L, Li Y C. Quantum secret sharing between m-party and n-party with six states. Sci China Ser G-Phy Mech Astron, 2009, 52: 1191–1202CrossRefADSGoogle Scholar
  15. 15.
    Yan F L, Gao T, Li Y C. Quantum secret sharing between multiparty and multiparty with four states. Sci China Ser G-Phys Mech Astron, 2007, 50: 572–580zbMATHCrossRefADSGoogle Scholar
  16. 16.
    Yang Y G, Wen Q Y, Zhu F C. An efficient quantum secret sharing protocol with orthogonal product states. Sci China Ser G-Phys Mech Astron, 2007, 50: 331–338CrossRefADSGoogle Scholar
  17. 17.
    Yang Y G, Wen Q Y. Threshold quantum secure direct communication without entanglement. Sci China Ser G-Phys Mech Astron, 2008, 51(2): 176–183zbMATHCrossRefADSGoogle Scholar
  18. 18.
    Hsu L Y. Quantum secret-sharing protocol based on Grover’s algorithm. Phys Rev A, 2003, 68: 022306CrossRefADSGoogle Scholar
  19. 19.
    Wang C, Sheng Y B, Li X H, et al. Efficient entanglement purification for doubly entangled photon state. Sci China Ser E-Tech Sci, 2009, 52(12): 3464–3467CrossRefGoogle Scholar
  20. 20.
    Wang W Y, Wang C, Zhang G Y, et al. Arbitrarily long distance quantum communication using inspection and power insertion. Chin Sci Bull, 2009, 54(1): 158–162CrossRefGoogle Scholar
  21. 21.
    Wen H, Han Z F, Zhao Y B, et al. Multiple stochastic paths scheme on partiallytrusted relay quantum key distribution network. Sci China Ser F-Inf Sci, 2009, 52(1): 18–22zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Xu FX, Chen W, Wang S, et al. Field experiment on a robust hierarchical metropolitan quantum cryptography network. Chin Sci Bull, 2009, 54: 2991–2997CrossRefGoogle Scholar
  23. 23.
    Zhang X L, Ji D Y. Analysis of a kind of quantum cryptographic schemes based on secret sharing. Sci China Ser G-Phys Mech Astron, 2009, 52(9): 1313–1316CrossRefADSGoogle Scholar
  24. 24.
    Gao T, Yan F L, Li Y C, et al. Quantum secret sharing between m-party and n-party with six states. Sci China Ser G-Phys Mech Astron, 2009, 52(8): 1191–1202CrossRefADSGoogle Scholar
  25. 25.
    Yang Y G, Wen Q Y. Threshold quantum secret sharing between multiparty and multi-party. Sci China Ser G-Phys Mech Astron, 2009, 51(9): 1308–1315CrossRefADSGoogle Scholar
  26. 26.
    Yang Y G, Wen Q Y, Zhang X. Multiparty simultaneous quantum identity authentication with secret sharing. Sci China Ser G-Phys Mech Astron, 2008, 51(3): 321–327zbMATHCrossRefADSGoogle Scholar
  27. 27.
    Tittel W, Zbinden H, Gisin N. Experimental demonstration of quantum secret sharing. Phys Rev A, 2001, 63: 042301CrossRefADSGoogle Scholar
  28. 28.
    Hao L, Wang C, Long G L. Experimental demonstration of a quantum secret-sharing using Grover algorithm, submittedGoogle Scholar
  29. 29.
    Grover L K. Quantum mechanics helps in searching for a needle in a haystack. Phys Rev Lett, 1997, 79: 325–328CrossRefADSGoogle Scholar
  30. 30.
    Grover L K. A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computation. New York: ACM Press, 1996. 212–219Google Scholar
  31. 31.
    Long G L. Grover algorithm with zero theoretical failure rate. Phys Rev A, 2001, 64: 022307CrossRefADSGoogle Scholar
  32. 32.
    Lo H-K, Chau H F. Is quantum bit commitment really possible? Phys Rev Lett, 1997, 78: 3410–3413; Mayers D. Unconditionally secure quantum bit commitment is impossible. Phys Rev Lett, 1997, 78: 3414–3417CrossRefADSGoogle Scholar
  33. 33.
    Lo H-K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 1999, 283: 2050–2056CrossRefADSGoogle Scholar
  34. 34.
    Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett, 1992, 69: 2881–2884zbMATHCrossRefMathSciNetADSGoogle Scholar
  35. 35.
    Liu X S, Long G L, Tong D M, et al. General scheme for superdense coding between multiparties. Phys Rev A, 2002, 65: 022304CrossRefADSGoogle Scholar
  36. 36.
    Li C Y, Li X H, Deng F G, et al. Complete multiple round quantum dense coding with quantum logical network. Chin Sci Bull, 2007, 52(9): 1162–1165CrossRefGoogle Scholar
  37. 37.
    Wei D X, Yang X D, Luo J, et al. NMR experimental implementation of three-parties quantum superdense coding. Chin Sci Bull, 2004, 49(5): 423–426zbMATHGoogle Scholar
  38. 38.
    Bruß D. Optimal eavesdropping in quantum cryptography with six states. Phys Rev Lett, 1998, 81: 3018–3021CrossRefADSGoogle Scholar
  39. 39.
    Chen P, Deng F G, Wang P X, et al. Measuring-basis-encrypted six-state quantum key distribution scheme. Prog Nat Sci, 2006, 16(1): 84–89zbMATHCrossRefGoogle Scholar
  40. 40.
    Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India. New York: IEEE, 1984. 175–179Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Key Laboratory for Atomic and Molecular NanoSciences and Department of PhysicsTsinghua UniversityBeijingChina
  2. 2.Tsinghua National Laboratory for Information Science and TechnologyBeijingChina

Personalised recommendations