The interpretation of gravity anomaly on lunar Apennines

  • Chao Chen
  • Bo Chen
  • JinSong Ping
  • Qing Liang
  • Qian Huang
  • WenJin Zhao
  • ChangDa Zhang
Article

Abstract

The lunar Apennines, located in the southeast of Mare Imbrium, is the largest range on the Moon. The gravity anomalies on profiles across the mountains reveal evidence of a great fault zone characteristic. The deep crustal structures of lunar Apennines are analyzed on the basis of topographic data from Chang’E-1 satellite and gravity data from Lunar Prospector. The inverted crust-mantle models indicate the presence of a lithosphere fault beneath the mountains. Inverted results of gravity and the hypothesis of lunar thermal evolution suggest that the lunar lithosphere might be broken ∼3.85 Ga ago due to a certain dynamic lateral movement and compression of lunar lithosphere. This event is associated with the history of magma filling and lithosphere deformation in the mountain zone and adjacent area. Moreover, the formation and evolution of Imbrium basin impose this effect on the process.

Keywords

the Moon lunar crust Apennine gravity anomaly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ping J S, Huang Q, Yan J G, et al. Lunar topographic model CLTM-s01 from Chang’E-1 laser altimeter. Sci China Ser G-Phys Mech Astron, 2009, 52(7): 1105–1114CrossRefADSGoogle Scholar
  2. 2.
    Morgan J P, Phillips R J. Inversion of combined gravity and bathymetry data for crustal structure — A prescription for downward continuation. Earth Planet Sci Lett, 1993, 119: 167–179CrossRefADSGoogle Scholar
  3. 3.
    Zuber M T, Smith D E, Lemoine F G, et al. The shape and internal structure of the Moon from the Clementine mission. Science, 1994, 266: 1839–1843CrossRefADSGoogle Scholar
  4. 4.
    Neumann G A, Zuber M T, Smith D E, et al. The lunar crust: Global signature and structure of major basins. J Geophys Res, 1996, 101: 16841–16863CrossRefADSGoogle Scholar
  5. 5.
    Neumann G A, Lemoine F G, Zuber M T, et al. What does gravity tell us about lunar crustal structure? Lunar Planet Sci, 1997, XXIX: 1713Google Scholar
  6. 6.
    Konopliv A S, Binder A B, Hood L L, et al. Improved gravity field of the Moon from Lunar Prospector. Science, 1998, 281: 1476–1480CrossRefADSGoogle Scholar
  7. 7.
    Wieczorek M A, Phillips R J. Potential anomalies on a sphere: Applications to the thickness of the lunar crust. J Geophys Res-Planet, 1998, 103(E1): 1715–1724CrossRefADSGoogle Scholar
  8. 8.
    Potts L V, von Frese R R B. Comprehensive mass modeling of the Moon from spectrally correlated free-air and terrain gravity data. J Geophys Res, 2003a, 108(E4): 5024, doi:10.1029/2000JE001440CrossRefGoogle Scholar
  9. 9.
    Potts L V, von Frese R R B. Crustal attributes of lunar basins from terrain-correlated free-air gravity anomalies. J Geophys Res, 2003b, 108(E5): 5037, doi:10.1029/2000JE001446CrossRefGoogle Scholar
  10. 10.
    Bussey B, Spudis P D, Hawke B R, et al. Geology and composition of the Apennine mountains, lunar Imbrium basin. Lunar Planet Sci, 1998, XXIX: 1352ADSGoogle Scholar
  11. 11.
    Spudis P, Head J W. Geology of the Imbrium basin Apennine mountains and relation to the Apollo 15 landing site. In: Proceedings Lunar Science Conference 8th, 1977. 2785-2797Google Scholar
  12. 12.
    Konopliv A S, Asmar S W, Carranza E, et al. Recent gravity models as a result of the Lunar Prospector mission. Icarus, 2001, 150: 1–18CrossRefADSGoogle Scholar
  13. 13.
    Namiki N, Iwata T, Matsumoto K, et al. Farside gravity field of the Moon from Four-Way Doppler Measurements of SELENE (Kaguya). Science, 2009, 323: 900–905CrossRefGoogle Scholar
  14. 14.
    Li F, Yan J G, Ping J S. Lunar exploration and lunar gravity field determination (in Chinese). Prog Geophys, 2006, 21(1): 31–37MATHGoogle Scholar
  15. 15.
    Yan J G, Ping J S, Li F, et al. Character analysis of the lunar gravity field by the LP165P model and its effect on lunar satellite orbit (in Chinese). Chin J Geophys, 2006, 49(2): 408–414Google Scholar
  16. 16.
    Ferrari A J, Nelson D L, Sjogren W L, et al. The isostatic state of the lunar Apennines and regional surroundings. J Geophys Res, 1978, 83: 2863–2871CrossRefADSGoogle Scholar
  17. 17.
    Spudis P D. Composition and origin of the Apennine Bench Formation. In: Lunar and Planetary Science Conference 9th. New York: Pergamon Press, 1978. 3379–3394Google Scholar
  18. 18.
    Wieczorek M A, Jolliff B L, Khan A, et al. The constitution and structure of the lunar interior. Rev Mineral Geochem, 2006, 60(1): 221–364CrossRefGoogle Scholar
  19. 19.
    Ouyang Z Y. Advance of lunar geology (in Chinese). Adv Earth Sci, 1994, 9(2): 80–81Google Scholar
  20. 20.
    Wise D U, Yates M T. Macons as structural relief on a lunar “Moho”. J Geophys Res, 1970, 75: 261–268CrossRefADSGoogle Scholar
  21. 21.
    Solomon S C, Head J W. Vertical movement in mare basins: Relation to mare emplacement, basin tectonics, and lunar thermal history. J Geophys Res, 1979, 84: 1667–1682CrossRefADSGoogle Scholar
  22. 22.
    Ghods A, Arkani-Hamed J. Impact-induced convection as the main mechanism for formation of lunar mare basalts. J Geophys Res, 2007, 112(E3): E03005, doi:10.1029/2006JE002709CrossRefGoogle Scholar
  23. 23.
    Solomon S C, Head J W. Lunar Mascon basins: Lava filling, tectonics, and evolution of the lithosphere. Rev Geophys Space Phys, 1980, 18(1): 107–140CrossRefADSGoogle Scholar
  24. 24.
    Watters T R, Konopliv A S. The topography and gravity of Mare Serenitatis: Implications for subsidence of the mare surface. Planet Space Sci, 2001, 49: 743–748CrossRefADSGoogle Scholar
  25. 25.
    Mohit P S, Phillips R J. Viscoelastic evolution of lunar multiring basins. J Geophys Res, 2006, 111(E12): E12001, doi:10.1029/2005JE-002654CrossRefADSGoogle Scholar
  26. 26.
    Anderson E M. The Dynamics of Faulting and Dyke Formation With Application to Britain. London: Oliver and Boyd, 1951. 1–50Google Scholar
  27. 27.
    Wang Q S, Teng J W, Wang G J, et al. Specific gravity field of the Himalayas east structural knot (in Chinese). Prog Geophys, 2007, 22(1): 35–42Google Scholar
  28. 28.
    Chen S Z. Gravity anomalies, lithospheric structure and plate dynamics in the Himalayas (in Chinese). Geotectonica et Metallogenia, 1993, 17(4): 315–334Google Scholar
  29. 29.
    Cui J W. Tectonic evolution of the Himalayan collision belt (in Chinese). Acta Geol Sin, 1997, 71(2): 107–112Google Scholar
  30. 30.
    Zhao W J, Nelson K D, Che J K, et al. Deep seismic reflection in Himalaya region reveals the complexity of the crust and upper mantle (in Chinese). Acta Geoscient Sin, 1996, 17(2): 138–152Google Scholar
  31. 31.
    Zhao W J, Zhao X, Shi D N, et al. Progress in the study of deep (INDEPTH) profiles in the Himalayas and Qinghai-Tibet Plateau (in Chinese). Geol Bull China, 2002, 21(11): 691–700MathSciNetGoogle Scholar
  32. 32.
    Su W, Peng Y J, Zheng Y J, et al. Crust and upper mantle shear velocity structure beneath the Tibetan plateau and adjacent areas (in Chinese). Acta Geoscient Sin, 2002, 23(3): 193–200Google Scholar
  33. 33.
    Peng C. Bouguer anomalies and crustal density structure in western China (in Chinese). Acta Geoscient Sin, 2005, 26(5): 417–422Google Scholar
  34. 34.
    Hetenyi G, Cattin R, Vergne J, et al. The effective elastic thickness of the India Plate from receiver function imaging, gravity anomalies and thermomechanical modeling. Geophys J Int, 2006, 167(3): 1106–1118CrossRefADSGoogle Scholar
  35. 35.
    Shearer C K, Hess P C, Wieczorek M A, et al. Thermal and magmatic evolution of the Moon. Rev Mineral Geochem, 2006, 60(1): 365–518CrossRefGoogle Scholar
  36. 36.
    Elkins-Tanton L T, Hager B H, Grove T L. Magmatic effects of the lunar late heavy bombardment. Earth Planet Sci Lett, 2004, 222: 17–27CrossRefADSGoogle Scholar
  37. 37.
    Hiesinger H, Head J W. New view of lunar geoscience: An introduction and overview. Rev Mineral Geochem, 2006, 60(1): 1–81CrossRefGoogle Scholar
  38. 38.
    Wilhelms D E. The geologic history of the Moon. Geological Survey Professional Paper, 1987, 1348: 1–302Google Scholar
  39. 39.
    Jones A P, Price G D, Price N J, et al. Impact induced melting and the development of large igneous provinces. Earth Planet Sci Lett, 2002, 202: 551–561CrossRefADSGoogle Scholar
  40. 40.
    Melosh J H. Impact Cratering: A Geologic Process. New York: Oxford University Press, 1989Google Scholar
  41. 41.
    Wieczorek M A, Phillips R J. Lunar multiring basins and the cratering process. Icarus, 1999, 139: 246–259CrossRefADSGoogle Scholar
  42. 42.
    Watters W A, Zuber M T, Hager B H. Thermal perturbations caused by large impacts and consequences for mantle convection. J Geophys Res, 2009, 114: E02001, doi:10.1029/2007JE002964CrossRefGoogle Scholar
  43. 43.
    Head J W. Serenitatis multi-ringed basin: Regional geology and basin ring interpretation. Moon Planets, 1979, 21: 439–462CrossRefADSGoogle Scholar
  44. 44.
    Hartmann W K, Strom R G, Weidenschilling S J, et al. Chronology of planetary volcanism by comparative studies of planetary craters. Basaltic Volcanism on the Terrestrial Planets. New York: Pergamon Press, 1981. 1050–1127Google Scholar
  45. 45.
    Neukum G, Ivanov B A. Crater size distributions and impact probabilities on Earth from lunar, terrestrial-planet, and asteroid cratering data. In: Gehrels T, ed. Hazard Due to Comets and Asteroids. Tucson: University of Arizona Press, 1994. 359–416Google Scholar
  46. 46.
    Stöffler D, Ryder G. Stratigraphy and isotope ages of lunar geologic units: Chronological standard for the inner solar system. In: Kallenbach R, Geiss J, Hartmann W K, eds. Chronology and Evolution of Mars. Dordrech/Boston/London: Kluwer Academic Press, 2001. 9–54Google Scholar
  47. 47.
    Spudis P D. The geology of Multi-ring Impact Basins. Cambridge: Cambridge University Press, 1993CrossRefGoogle Scholar
  48. 48.
    Wessel P, Smith W H F. Free software helps map and display data. Eos Trans AGU, 1991, 72(41): 441CrossRefADSGoogle Scholar

Copyright information

© Science in China Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Chao Chen
    • 1
  • Bo Chen
    • 1
  • JinSong Ping
    • 2
  • Qing Liang
    • 1
  • Qian Huang
    • 2
  • WenJin Zhao
    • 3
  • ChangDa Zhang
    • 1
  1. 1.Institute of Geophysics & GeomaticsChina University of GeosciencesWuhanChina
  2. 2.Shanghai Astronomical ObservatoryShanghaiChina
  3. 3.Chinese Academy of Geological SciencesBeijingChina

Personalised recommendations