Mg micro/nanoscale materials with sphere-like morphologies: Size-controlled synthesis and characterization

Article

Abstract

Mg micro/nanoscale materials with sphere-like morphologies are prepared via a vapor-transport deposition process. The structure and morphology of the as-prepared products are characterized by powder X-ray diffraction and scanning electron microscopy. Vapor-liquid-solid mechanism is proposed to explain the formation of Mg micro/nanospheres on the basis of the experimental results.

Keywords

magnesium micro/nanoscale spheres growth mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? Chem Rev, 2004, 104: 4245–4269CrossRefGoogle Scholar
  2. 2.
    Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chem Rev, 2007, 107: 2411–2502CrossRefGoogle Scholar
  3. 3.
    Wu J, Chen S Z, Liu D. Control and power electronics technology in renewable energy. Sci China Ser E-Technol Sci, 2008, 51(6): 702–712MATHCrossRefGoogle Scholar
  4. 4.
    Xu W, Peng B, Chen J, et al. New triphenylamine-based dyes for dye-sensitized solar cells. J Phys Chem C, 2008, 112: 874–880CrossRefGoogle Scholar
  5. 5.
    Liang M, Xu W, Cai F S, et al. New triphenylamine-based organic dyes for efficient dye-sensitized solar cells. J Phys Chem C, 2007, 111: 4465–4472CrossRefGoogle Scholar
  6. 6.
    Steele B C H, Heinzel A. Materials for fuel-cell technologies. Nature, 2001, 414: 345–352CrossRefADSGoogle Scholar
  7. 7.
    Zhu J, Su Y, Cheng F Y, et al. Improving the performance of PtRu/C catalysts for methanol oxidation by sensitization and activation treatment. J Power Sources, 2007, 166: 331–336CrossRefGoogle Scholar
  8. 8.
    Zhu J, Cheng F Y, Tao Z L, et al. Electrocatalytic methanol oxidation of Pt0.5Ru0.5−xSnx/C (x=0−0.5). J Phys Chem C, 2008, 112: 6337–6345CrossRefGoogle Scholar
  9. 9.
    Hu Y H, Chen G H, Wu Y Y, et al. Infrared-transmission spectra and hydrogen content of hydrogenated amorphous silicon. Sci China Ser G-Phys Mech Astron, 2004, 47: 381–392CrossRefADSGoogle Scholar
  10. 10.
    Ping F L, Jiang G, Zhang L, et al. Theoretical study of aging effects on LaNi5 tritium storage. Sci China Ser G-Phys Mech Astron, 2005, 48: 676–686CrossRefADSGoogle Scholar
  11. 11.
    Wang C, Mao Z Q, Xu J M, et al. Preparation of a self-humidifying membrane electrode assembly for fuel cell and its performance analysis. Sci China Ser G-Phys Mech Astron, 2003, 46: 501–508CrossRefADSGoogle Scholar
  12. 12.
    Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature, 2001, 414: 353–358CrossRefADSGoogle Scholar
  13. 13.
    Cheng F Y, Liang J, Zhao J Z, et al. Biomass waste-derived microporous carbons with controlled texture and enhanced hydrogen uptake. Chem Mater, 2008, 20: 1889–1895CrossRefGoogle Scholar
  14. 14.
    Zhao J Z, Ma H, Chen J. Improved hydrogen generation from alkaline NaBH4 solution using carbon-supported Co-B as catalysts. Int J Hydrog Energy, 2007, 32: 4711–4716CrossRefGoogle Scholar
  15. 15.
    Orimo S I, Nakamori Y, Eliseo J R, et al. Complex hydrides for hydrogen storage. Chem Rev, 2007, 107: 4111–4132CrossRefGoogle Scholar
  16. 16.
    Xu W, Tao Z L, Chen J. Progress of research on hydrogen storage. Prog Chem, 2006, 18: 200–210Google Scholar
  17. 17.
    Huot J, Liang G, Schulz R. Mechanically alloyed metal hydride systems. Appl Phys A, 2001, 72: 187–195CrossRefADSGoogle Scholar
  18. 18.
    Song M R, Chen M, Zhang Z J. Preparation and characterization of Mg nanoparticles. Mater Charact, 2008, 59: 514–518CrossRefGoogle Scholar
  19. 19.
    de Jongh P E, Wagemans R W P, Eggenhuisen T M, et al. The preparation of carbon-supported magnesium nanoparticles using melt infiltration. Chem Mater, 2007, 19: 6052–6057CrossRefGoogle Scholar
  20. 20.
    Aguey-Zinsou K F, Ares-Fernández J R. Synthesis of colloidal magnesium: A near room temperature store for hydrogen. Chem Mater, 2008, 20: 376–378CrossRefGoogle Scholar
  21. 21.
    Zhang K, Rossi C. Tenailleau C, et al. Aligned three-dimensional prismlike magnesium nanostructures realized onto silicon substrate. Appl Phy Lett, 2008, 92: 063123Google Scholar
  22. 22.
    Li W Y, Li C S, Zhou C Y, et al. Metallic magnesium nano/mesoscale structures: Their shape-controlled preparation and Mg/air battery applications. Angew Chem Int Ed, 2006, 45: 6009–6012CrossRefGoogle Scholar
  23. 23.
    Li W Y, Li C S, Ma H, et al. Magnesium nanowires: Enhanced kinetics for hydrogen absorption and desorption. J Am Chem Soc, 2007, 129: 6710–6711CrossRefGoogle Scholar
  24. 24.
    He M Q, Mohammad S N. Novel chemical-vapor deposition technique for the synthesis of high-quality single-crystal nanowires and nanotubes. J Chem Phys, 2006, 124: 064714Google Scholar
  25. 25.
    Cheyssac P, Sacilotti M, Patriarche G. Vapor-liquid-solid mechanisms: Challenges for nanosized quantum cluster/ dot/wire materials. J Appl Phys, 2006, 100: 044315Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Institute of New Energy Material Chemistry, Key Laboratory of Energy Material Chemistry (Tianjin) and Engineering Research Center of High-Energy Storage and Conversion (Ministry of Education)Nankai UniversityTianjinChina

Personalised recommendations