The atomic structure and the properties of ununbium (Z = 112) and Mercury (Z = 80)

  • Li JiGuang 
  • Dong ChenZhong 
  • Yu YouJun 
  • Ding XiaoBin 
  • S. Fritzsche
  • B. Fricke
Article

Abstract

A super heavy element Uub (Z = 112) has been studied theoretically in conjunction with relativistic effects and the effects of electron correlations. The atomic structure and the oscillator strengths of low-lying levels have been calculated, and the ground states have also been determined for the singly and doubly charged ions. The influence of relativity and correlation effects to the atomic properties of such a super heavy element has been investigated in detail. The results have been compared with the properties of an element Hg. Two energy levels at wave numbers 64470 and 94392 are suggested to be of good candidates for experimental observations.

Keywords

super heavy element atomic structure relativistic effects electron correlation effects MCDF method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu J. Progress and prospect of the synthesiaed studies of superheavy element (nuclied). Prog Phys, 2002, 22(3): 272–282Google Scholar
  2. 2.
    Nilsson S G, Sobiczwski C F T, Szymański Z, et al. On the nuclear structure and stability of heavy and superheavy elements. Nucl Phys A, 1969, 131(1): 1–66CrossRefADSGoogle Scholar
  3. 3.
    Gan Z G, Fan H M, Qing Z. First observation for isotope 265Bh (Z = 107). High Energy Phys Nucl Phys, 2004, 28(4): 332–334Google Scholar
  4. 4.
    Tai F, Chen D H, Xu C, et al. Description of new element Z = 113 and its α-decay. High Energy Phys Nucl Phys, 2005, 29(5): 439–441Google Scholar
  5. 5.
    Ren Z Z, Chen D H, Tai F, et al. Ground state properties of odd-Z superheavy nuclei. Phys Rev C, 2003, 67(6): 064302Google Scholar
  6. 6.
    Nash C S. Atomic and molecular properties of elements 112, 114, and 118. J Phys Chem, 2005, 109: 3493–3500Google Scholar
  7. 7.
    Schwerdtfeger P, Seth M. Relativistic quantum chemistry of the superheavy elements. Close-shell element 114 as a case study. J Nucl Rodiochem Sci, 2002, 3(1): 133–136Google Scholar
  8. 8.
    Düllmann Ch E, Brüchle W, Dressler R, et al. Chemical investigation of hassium (element 108). Nature, 2002, 418: 859–862CrossRefADSGoogle Scholar
  9. 9.
    Sewtz M, Backe H, Dretzke A, et al. First observation of atomic levels for the element Fermium (Z = 100). Phys Rev Lett, 2003, 90(16): 163002Google Scholar
  10. 10.
    Rose S J, Grant I P, Pyper N C. The direct and indirect effects in the relaivistic modification of atomic valence orbitals. J Phys B, 1978, 11(7): 1171–1176CrossRefADSGoogle Scholar
  11. 11.
    Pyykkö P. Relativistic effects in structure chemistry. Chem Rev, 1988, 88: 562–594CrossRefGoogle Scholar
  12. 12.
    Fritzsche S. On the accuracy of valence-shell computations for heavy and super-heavy elements. Eur Phys J D, 2005, 33: 15–21CrossRefADSGoogle Scholar
  13. 13.
    Yong-Ki K. Strengths and weaknesses of relativistic atomic structure calculations. Physica Scripta, 1997, T73: 19–24CrossRefGoogle Scholar
  14. 14.
    Hofmann S, Ninov V, Hesßberger F P, et al. The new element 112. Z Phys A, 1996, 354(3): 229–230CrossRefGoogle Scholar
  15. 15.
    Desclaux J P. Relativistic Dirac-Fork expectation values for atoms with Z = 1 to Z = 120. Atomic Data Nuclera Data Tables, 1973, 12(4): 311–406CrossRefADSGoogle Scholar
  16. 16.
    Yakushev A B, Zvara I, Oganessian Y T, et al. Chemical identification and properties of element 112. Radiochim Acta, 2003, 91: 433–439CrossRefGoogle Scholar
  17. 17.
    Pershina V, Bastug T. Relativistic effects on experimentally studied gas-phase properties of the heaviest elements. Chem Phys, 2005, 311: 139–150CrossRefADSGoogle Scholar
  18. 18.
    Sewtz M, Backe H, Dong C Z, et al. Resonance ionization spectroscopy of fermium (Z = 100). Spec Acta Part B, 2003, 58: 1077–1082CrossRefGoogle Scholar
  19. 19.
    Weiss P. Taking a shine to number 100. Sci News, 2003, 163: 349Google Scholar
  20. 20.
    Eliav E, Kaldor U, Ishikawa Y. Transition energies of mercury and ekamercury (element 112) by the relativistic coupled-cluster method. Phys Rev A, 1995, 52(4): 2765–2769CrossRefADSGoogle Scholar
  21. 21.
    Pershina V, Bastug T, Jacob T, et al. Intermetallic compounds of the heaviest elements: the electronic structure and bonding of dimers of element 112 and its homolog Hg. Chem Phys Lett, 2002, 365: 176–183Google Scholar
  22. 22.
    Sarpe-Tudoran C. Adsorption of element 112 on a Au surface. Dissertation for the Doctoral Degree. Kassel: Kassel University, 2004Google Scholar
  23. 23.
    Ding X B, Dong C Z. Theoretical predictions on the low-lying excitation structure of super heavy element bohrium (Z = 107). Acta Phys Sin, 2004, 53(10): 3326–3329Google Scholar
  24. 24.
    Johnson E, Fricke B, Jacob T, et al. Ionization potentials and radii of neutral and ionized species of elements 107 (bohrium) and 108 (hassium) from extended multiconfiguration Dirac-Fock calculations. J Chem Phys, 2002, 116(5): 1862–1868CrossRefADSGoogle Scholar
  25. 25.
    Li J G, Dong C Z, Ding X B. Resonance energies, absorption oscillator strengths and ionization potentials of element hassium (Z = 108). Chin Phys Lett, 2007, 24(1): 83–85CrossRefADSGoogle Scholar
  26. 26.
    Grant I P. Relativistic calculation of atomic structure. Advan Phys, 1970, 19: 747–811CrossRefADSGoogle Scholar
  27. 27.
    Fricke B. Relativistic calculation of atomic structure. Physica Scripta, 1984, T8: 129–133CrossRefADSGoogle Scholar
  28. 28.
    Parpia F A, Fischer C F, Grant I P. GRASP92: A package for large-scale relativistic atomic structure calculations. Comp Phys Commun, 1996, 94: 249–271CrossRefADSGoogle Scholar
  29. 29.
    Fritzsche S, Fischer C F, Gaigalas G. RELCI: A program for relativistic cofiguration interaction calcurations. Comp Phys Commun, 2002, 148: 103–123CrossRefADSGoogle Scholar
  30. 30.
    Cowan R D. The Theory of Atomic Structure and Apectra. Berkeley: University of California, 1981. 404Google Scholar
  31. 31.
    Fritzsche S, Fischer C F, Dong C Z. REOS99: A revised program for transition probability calculations including relativistic, correlation, and relaxation effects. Comp Phys Commun, 2000, 124: 340–352MATHCrossRefADSGoogle Scholar
  32. 32.
    Keller O L, Nestor C W, Carison T A, et al. Predicted properties of the superheavy element. II. element111, eka-gold. J Phys Chem, 1973, 77(14): 1806–1809CrossRefGoogle Scholar
  33. 33.
    Pyykkö P, Tokman M, Labzowsky L N. Estimated valence-level Lamb shifts for group 1 and group 11 metal atoms. Phys Rev A, 1998, 57(2): R689–R692CrossRefADSGoogle Scholar
  34. 34.
    Johnson E, Fricke B, Keller O L, et al. Ionization potentials and radii of atoms and ions of elements 104 (unnilquadium) and of hafnium (+2) derived from multiconfiguration Dirac-Fock calculations. J Chem Phys, 1990, 93(11): 8041–8050CrossRefADSGoogle Scholar
  35. 35.
    Yu Y J, Li J G, Dong C Z, et al. Excited energies, resonance absorption oscillator strengths and ionization potentials of netural and ionized species of element Uub (Z = 112). Eur Phys J D, 2007, 44: 51–56CrossRefADSGoogle Scholar

Copyright information

© Science in China Press 2007

Authors and Affiliations

  • Li JiGuang 
    • 1
  • Dong ChenZhong 
    • 1
    • 2
  • Yu YouJun 
    • 1
  • Ding XiaoBin 
    • 1
  • S. Fritzsche
    • 3
  • B. Fricke
    • 3
  1. 1.College of Physics and Electronic EngineeringNorthwest Normal UniversityLanzhouChina
  2. 2.National Laboratory of Heavy Ion Accelerator of LanzhouLanzhouChina
  3. 3.Institut für PhysikUniversität KasselKasselGermany

Personalised recommendations