Science in China Series G

, Volume 49, Issue 3, pp 257–272 | Cite as

Intermediate processes and critical phenomena: Theory, method and progress of fractional operators and their applications to modern mechanics

Article

Abstract

From point of view of physics, especially of mechanics, we briefly introduce fractional operators (with emphasis on fractional calculus and fractional differential equations) used for describing intermediate processes and critical phenomena in physics and mechanics, their progress in theory and methods and their applications to modern mechanics. Some authors’ researches in this area in recent years are included. Finally, prospects and evaluation for this subject are made.

Keywords

fractional operators intermediate processes critical phenomena modern mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oldham K B, Spanier J. The Fractional Calculus. New York-London: Academic Press, 1974MATHGoogle Scholar
  2. 2.
    Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives: Theory and Applications. Switzerland: Gordon and Breach Science Publishers, 1993MATHGoogle Scholar
  3. 3.
    Miller K S, Ross B. An introduction to the fractional calculus and fractional differential equations. New York: John Wiley & Sons Inc., 1993MATHGoogle Scholar
  4. 4.
    Mandelbrot B B. The Fractal Geometry of Nature. New York: W. H. Freeman & Co., 1982MATHGoogle Scholar
  5. 5.
    Ross B. Fractional calculus and its applications. In: Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1975, 457Google Scholar
  6. 6.
    Butzer P L, Westphal U. An introduction to fractional calculus. In: Hilfer R, ed. Applications of Fractional Calculus in Physics. Singapore: World Scientific Publishing Co Pte Ltd, 2000. 1–85Google Scholar
  7. 7.
    Hilfer R. Fractional time evolution. In: Hilfer R, ed. Applications of Fractional Calculus in Physics. Singapore: World Scientific Publishing Co Pte Ltd, 2000Google Scholar
  8. 8.
    Mandelbrot B B, Ness J W. Fractional Brownian motions, fractional noises and applications. SIAM Rev, 1968, 10: 422–437MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Mandelbrot B B. Fractals, Form and Chance and Dimension. San Francisco: W. H. Freeman & Co., 1977MATHGoogle Scholar
  10. 10.
    Mandelbrot B B. Is nature fractals? Science, 1998, 279: 5352Google Scholar
  11. 11.
    Mandelbrot B B. Some mathematical questions arising in fractal geometry. In: Pier J-P, Boston B, eds. Development of Mathematics 1950–2000. Berlin: Birkhäuser-Verlag, 2000. 795–811Google Scholar
  12. 12.
    Mandelbrot B B. Topics on fractals in mathematics and physics. In: Louis H Y Chen, et al., eds. Challenges for the 21st Century Fundamental Sciences: Mathematics and Theoretical Physics. Singapore: World Scientific Publishing Co Pte Ltd, 2000Google Scholar
  13. 13.
    Richardson L F. Atmospheric diffusion shown on a distance-neighbour graph. Proc Roy Soc London A, 1926, 110: 709–737ADSGoogle Scholar
  14. 14.
    Ghil M, Benzi R, Parisi G. Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. Amsterdam: North-Holland, 1985Google Scholar
  15. 15.
    Meakin P. Fractals, scaling and growth far from equilibrium. In: Cambridge Nonlinear Science Series 5. Cambridge: Cambridge University Press, 1998Google Scholar
  16. 16.
    Batchelor G K, Moffatt H K, Worster M G. Perspectives in Fluid Dynamics—A Collective Introduction to Current Research. Cambridge: Cambridge University Press, 2000MATHGoogle Scholar
  17. 17.
    Frisch U. Turbulence. Cambridge: Cambridge University Press, 1995MATHGoogle Scholar
  18. 18.
    Pier J-P, Boston B, eds. Development of Mathematics 1950–2000. Berlin: Birkhäuser-Verlag, 2000MATHGoogle Scholar
  19. 19.
    Metzler R, Klafter J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Physics Reports, 2000, 339: 1–77MathSciNetCrossRefADSMATHGoogle Scholar
  20. 20.
    Fikhtengolz G M. Course of Differential and Integral. Beijing: People Education Press, 1964. 431–433Google Scholar
  21. 21.
    Kolwankar K M. Fractional differentiability of nowhere differentiable functions and dimensions. A dissertation for the degree of doctor of philosophy. University of Pune, 1997Google Scholar
  22. 22.
    West B J, Bologna M, Grigolini P. Physics of Fractal Operators. New York: Springer-Verlag Inc., 2003Google Scholar
  23. 23.
    Nonnemacher T F, Metzler R. Applications of fractional calculus techniques to problems in biophysics. In: Hilfer R, ed. Applications of Fractional Calculus in Physics. Singapore: World Scientific Publishing Co Pte Ltd, 2000. 377–427Google Scholar
  24. 24.
    Family F, Daoud M, Herrmann H J, et al. Scalling and Disordered Systems. Singapore: World Scientific Publishing Co Pte Ltd, 2002Google Scholar
  25. 25.
    Meakin P. Fractals, scaling and growth far from equilibrium. In: Cambridge Nonlinear Science Series 5. Cambridge: Cambridge University Press, 1998Google Scholar
  26. 26.
    Shlesinger M F. Fractal time and 1/f noise in complex systems. Ann N Y Acad Sci, 1987, 504Google Scholar
  27. 27.
    Schroeder M. Fractals, Chaos, Power Laws. San Francisco: W. H. Freeman & Co., 1991MATHGoogle Scholar
  28. 28.
    Schiessel H, Friedrich C, Blumen A. Applications to problems in polymer physics and rheology. In: Hilfer R, ed. Applications of Fractional Calculus in Physics. Singapore: World Scientific Publishing Co Pte Ltd, 2000. 331–376Google Scholar
  29. 29.
    Glöckle W G, Nonenmacher T F. Fractional integral operators and fox function in the theory of viscoelasticity. Macromolecules, 1991, 24: 6426–6434CrossRefADSGoogle Scholar
  30. 30.
    Nonnenmacher T F, Metzler R. On the Riemann-Liouville fractional calculus and some recent applications. Fractals, 1995, 3(3): 557–566MathSciNetMATHGoogle Scholar
  31. 31.
    Friedrich C. Relaxation and retardation functions of the Maxwell model with fractional derivatives. Rheol Acta, 1991, 30: 151–158CrossRefGoogle Scholar
  32. 32.
    Schiessel H, Metzler R, Nonnenmacher T F. Generalized viscoelastic models: Their fractional equations with solutions. J Phys A: Math Gen, 1995, 28: 6567–6584CrossRefADSMATHGoogle Scholar
  33. 33.
    Glöckle W G, Nonnenmacher T F. Fox function representation of Non-Debye relaxation processes. J Stat Phys, 1993, 71: 741–757CrossRefMATHADSGoogle Scholar
  34. 34.
    Hilfer R. Fractional calculus and regular variation in thermodynamics. In: Hilfer R, ed. Applications of Fractional Calculus in Physics. Singapore: World Scientific Publishing Co Pte Ltd, 2000. 430–463Google Scholar
  35. 35.
    El-Sayed A M A, Gaafar F M. Fractional calculus and some intermediate physical processes. Applied Mathematics and Computation, 2003, 144: 117–126MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Aharony A, Asikainen J. Critical phenomena. In: Family F, Daoud M, Herrmann H J, Stanley H E, eds. Scaling and Disordered Systems. Singapore: World Scientific Publishing Co Pte Ltd, 2002. 1–79Google Scholar
  37. 37.
    Xu M Y, Tan W C. Representation of the constitutive equation of viscoelastic materials by the generalized fractional element networks and its generalized solutions. Science in China, Series G, 2003, 46(2): 145–157CrossRefGoogle Scholar
  38. 38.
    Lam L. Introduction to Nonlinear Physics. New York: Springer-Verlag Inc., 1997MATHGoogle Scholar
  39. 39.
    Cowan G A, Pines D, Meltzer D. Complexity: Metaphors, Models and Reality. Menlo Park: Addison-Wesley, 1994MATHGoogle Scholar
  40. 40.
    Rossikhin Y A, Shitikova M V. A new method for solving dynamic problems of fractional derivative viscoelasticity. Int J Eng Sci, 2000, 39: 149–176CrossRefGoogle Scholar
  41. 41.
    Rossikhin Y A, Shitikova M V. Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl Mech Rev, 1997, 50(1): 15–67MathSciNetCrossRefGoogle Scholar
  42. 42.
    Mathai A M, Saxena R K. The H-function with Applications in Statistics and Other Disciplines. New Delhi: Wiley Eastern Limited, 1978MATHGoogle Scholar
  43. 43.
    Srivastava H M, Gupta K C, Goyal S P. The H-functions of One and Two Variables with Applications. New Delhi: South Asian Publishers, 1982MATHGoogle Scholar
  44. 44.
    Podlubny I. Fractional Differential Equations. San Diego: Academic Press, 1999MATHGoogle Scholar
  45. 45.
    Erdelyi A. Higher Transcendental Functions. New York: Mc Graw-Hill, 1953Google Scholar
  46. 46.
    Glöckle W G, Nonenmacher T F. Fractional integral operators and fox function in the theory of viscoelasticity. Macromolecules, 1991, 24: 6426–6434CrossRefADSGoogle Scholar
  47. 47.
    Gorenflo R, Luchko Y, Mainardi F. Wright functions as scale-invariant solutions of the diffusion-wave equation. J of Comp and App Math, 2000, 118: 175–191MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Xu M Y, Tan W C. Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion. Sci China Ser A-Math, 2001, 44(11): 1387–1399MATHGoogle Scholar
  49. 49.
    Tan W C, Xu M Y. Unsteady flows of a generalized second grade fluid with fractional derivative model between two parallel plates. Acta Mech Sin, 2004, 20(5): 471–476MathSciNetGoogle Scholar
  50. 50.
    Tan W C, Pan W X, Xu M Y. A note on unsteady flows of a viscoelastic fluid with fractional Maxwell model between two parallel plates. Int J Non-linear Mech, 2003, 38(5): 645–650CrossRefMATHGoogle Scholar
  51. 51.
    Tan W C, Xu M Y. The impulsive motion of flat plate in a general second grade fluid. Mechanics Research Communication, 2002, 29(1): 3–9MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Tan W C, Xian F, Wei L. An exact solution of unsteady Couette flow of generalized second grade fluid. Chin Sci Bull, 2002, 47(21): 1783–1785MathSciNetCrossRefGoogle Scholar
  53. 53.
    Tan W C, Xu M Y. Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model. Acta Mech Sin, 2002, 18(4): 342–349MathSciNetGoogle Scholar
  54. 54.
    Jin H, Xu M Y. Some notes to “On the axial flow of generalized second order fluid in a pipe”. In: Zhuang F G, Li J C, eds. Recent Advances in Fluid Mechanics, Proc. of 4th Int. Couf. on J. Mech. Beijing: Tsinghua Univ. Press & Springer-Verlag, 2004Google Scholar
  55. 55.
    Song D Y. Study of rheological characterization of fenugreek gum with modified Maxwell. Chinese J Chem Eng, 2000, 8: 85–88Google Scholar
  56. 56.
    Tong D K, Wang R H, Yang H S. Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe. Science in China, Series G, 2005, 48(4): 485–495CrossRefADSGoogle Scholar
  57. 57.
    Tong D K, Liu Y S. Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe. Inter J of Engn Sci, 2005, 43(3–4): 281–289MathSciNetCrossRefGoogle Scholar
  58. 58.
    Tong D K, Wang R H. Analysis of the flow of non-Newtonian viscoelastic fluids in fractal reservoir with the fractional derivative. Science in China, Series G, 2004, 47(4): 424–441CrossRefADSGoogle Scholar
  59. 59.
    Huang J Q, He G Y, Liu C Q. Analysis of general second-order fluid flow in double cylinder rheometer. Sci China Ser A-Math, 1997, 40(2): 183–190CrossRefMATHGoogle Scholar
  60. 60.
    Song D Y, Jiang T Q. Study on the constitutive equation with fractional derivative for the viscoelastic fluids — Modified Jeffreys model and its application. Rheologica Acta, 1998, 27: 512–517CrossRefGoogle Scholar
  61. 61.
    Nonnenmacher T F, Metzler R. Applications of fractional calculus techniques to problems in biophysics. In: Hilfer R, ed. Applications of Fractional Calculus in Physics. Singapore: World Scientific Publishing Co Pte Ltd, 2000. 377–427Google Scholar
  62. 62.
    Xu M Y. Present Situation of Pharmacodynamics in Researches on Biomechanics and Its Applications (in Chinese), Yang Guitong, Jin Chenren, eds. Guangzhou: Hua’nan University of Science and Engineering Press, 1990. 33–37Google Scholar
  63. 63.
    West B J, Griffin L. Allometric control of human gait. Fractals, 1998, 6: 101–108Google Scholar
  64. 64.
    FLeury V, Schwartz L. Diffusion limited aggregation from shear stress as a simple model of vasculogenesis. Fractals, 1999, 7: 33–39Google Scholar
  65. 65.
    Morávek Z, Fiala J. Fractal dynamics in the growth of root. Chaos, Solions and Fractals, 2004, 19: 31–34CrossRefMATHGoogle Scholar
  66. 66.
    Xu M Y. An analytical solution for the model of drug distribution and absorption in small intestine. Acta Mech Sinica, 1990, 6(4): 316–323MATHADSGoogle Scholar
  67. 67.
    Sun T, Meakin P, Jossang T. Minimum energy dissipation and fractal structures of vascular systems. Fractals, 1995, 3(1): 123–153MATHGoogle Scholar
  68. 68.
    Best B J. Fractal Physiology and Chaos in Medicine. New York: World Scientific Publishing Co Pte Ltd, 1993Google Scholar
  69. 69.
    Su H J, Xu M Y. Generalized visco-elastic model of otolith organs with fractional orders. Chinese J of Biomedical Engineering (in Chinese), 2001, 20(1): 46–52Google Scholar
  70. 70.
    Liu J G, Xu M Y. Study on a fractional model of viscoelasticity of human cranial bone. Chinese J of Biomedical Engineering (in Chinese), 2005, 24(1): 12–16Google Scholar
  71. 71.
    Liu J Y, Xu M. Y. An exact solution to the moving boundary problem with fractional anomalous diffusion in drug release devices. ZAMM, 2004, 84(1): 22–28MathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    Glöckle W G, Nonenmacher T F. A fractional calculus approach to self-similar protein dynamics. Biophysical Journal, 1995, 68: 46–53CrossRefADSGoogle Scholar
  73. 73.
    Tolić-Norrelykke I M, Munteanu E L, Thon G, et al. Anomalous diffusion in living yeast cells. Phys Rev Lett, 2004, 93(7): 078102Google Scholar
  74. 74.
    Yakushevich L V. Nonlinear dynamics of DNA. In: Christiansen P L, Sorensen M P, Scott A C, eds. Nonlinear Science at the Dawn of the 21st Century. Berlin Heideberg: Springer-Verlag, 2000, 5(19): 373–391Google Scholar
  75. 75.
    Peng C K, Buldyrev S, Goldberg A L, et al. Long-range correlations in nucleotide sequences. Nature, 1992, 356: 168CrossRefADSGoogle Scholar
  76. 76.
    Stanley H E, Buldyrev S, Goldberg A L, et al. Statistical mechanics in biology: How ubiquitous are long-range correlations. Physica A, 1994, 205: 214CrossRefADSGoogle Scholar
  77. 77.
    Voss R. Evolution of long-range fractal correlations and 1/fnoise in DNA base sequences. Phys Rev Lett, 1992, 68(25): 3805CrossRefADSGoogle Scholar
  78. 78.
    Buldyrev S V, Goldberger A L, Havlin S, et al. Generalized levy-walk model for DNA nucleotide sequences. Phy Rev E, 1993, 47: 4514CrossRefADSGoogle Scholar
  79. 79.
    Allegrini P, Buacci M, Grigolini P, et al. Fractional Brownian motion as a nonstationary process: An alternative paradigm for DNA sequences. Phys Rev E, 1998, 57: 1–10CrossRefGoogle Scholar
  80. 80.
    Bickel D R, West B J. Multiplicative and fractal processes in DNA evolution. Fractals, 1998, 6: 211–217Google Scholar
  81. 81.
    Yu Z G, Anh V, Lau K S. Measure representation and multifractal analysis of complete genomes. Phys Rev E, 2002, 64: 031903Google Scholar
  82. 82.
    Yakushevich L V. Nonlinear Physics of DNA. New York: John Wiley, 1998MATHGoogle Scholar
  83. 83.
    Mainardi F. Fractional relaxation-oscillation and fractional diffusion wave phenomena. Chaos, Solitons & Fractals, 1996, 7(9): 1461–1477MATHMathSciNetCrossRefGoogle Scholar
  84. 84.
    Carpinteri A, Mainardi F. Fractals and Fractional Calculus in Continuum Mechanics. New York: Springer Wien, 1997MATHGoogle Scholar
  85. 85.
    Henry B I, Wearne S L. Fractional reaction-diffusion. Physica A, 2000, 276(3): 448–455MathSciNetCrossRefADSGoogle Scholar
  86. 86.
    Nakayama T, Yakubo K. Fractal Concepts in Condensed Matter Physics. Berlin Heidelberg: Springer-Verlag, 2003Google Scholar
  87. 87.
    Compte A. Stochastic foundations of fractional dynamics. Phy Rev E, 1996, 53(4): 4191–4193CrossRefADSGoogle Scholar
  88. 88.
    Metzler R, Klafter J. From continuous time random walks to fractional diffusion equations. In: The Random Walk’s Guide to Anomalous Diffusion: A Fractional Dynamics Approach. Physics Reports, 2000, 339: 13–31Google Scholar
  89. 89.
    Metzler R, Glöckle W G, Nonnenmacher T F. Fractional model equation for anomalous diffusion. Physica A, 1994, 211: 13–24CrossRefADSGoogle Scholar
  90. 90.
    Shaughnessy B O, Procaccia I. Analytical solution for diffusion on fractal objects. Phys Rev Lett, 1985, 54: 455CrossRefADSGoogle Scholar
  91. 91.
    Silva P C, Silvaa L R, Lenzib E K, et al. Anomalous diffusion and anisotropic nonlinear Fokker-Planck equation. Physica A, 2004, 342: 16–21CrossRefADSGoogle Scholar
  92. 92.
    Silva P C, Silvaa L R, Lenzib E K, et al. Fractional and nonlinear diffusion equation: Additional results. Physica A, 2004, 344: 671–676CrossRefADSGoogle Scholar
  93. 93.
    Room H E, Giona M. Fractional diffusion equation on fractals: Three-dimensional case and scattering function. J Phy A, 1992, 25: 2107–2117MathSciNetCrossRefADSGoogle Scholar
  94. 94.
    Nonnemacher T F, Metzler R. Applications of fractional calculus technique to problems in biophysics. In: Hilfer R, ed. Applications of Fractional Calculus in Physics. Singapore: World Scientific Publishing Co Pte Ltd, 2000, 378–427Google Scholar
  95. 95.
    Duan J S, Xu M Y. Concentration Distribution of Fractional Anomalous Diffusion Caused by an Instantaneous Point Source. Applied Math Mech, 2003, 24(11): 1302–1308MathSciNetMATHGoogle Scholar
  96. 96.
    Jiang X Y, Xu M Y. Analysis of fractional anomalous diffusion caused by an instantaneous point source in disordered fractal media. Int J Non-linear Mechanics, 2006, 41: 156–165CrossRefGoogle Scholar
  97. 97.
    Lenzi E K, Mendes G A, Mendes R S, et al. Exact solutions to nonlinear nonautonomous space-fractional diffusion equations with absorption. Phys Rev E, 2003, 67: 051109Google Scholar
  98. 98.
    Bologna M, Tsallis C, Grigolini P. Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: Exact time-dependent solutions. Phys Rev E, 2000, 62: 2213–2218CrossRefADSGoogle Scholar
  99. 99.
    Buckwar E, Luchko Y. Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. Journal of Mathematical Analysis & Applications, 1998, 227: 81–97MathSciNetCrossRefMATHGoogle Scholar
  100. 100.
    Elhanbaly A. The explicit solutions of a class of diffusion equation. Chaos, Solitons & Fractals, 2002, 14: 965–974MATHMathSciNetCrossRefGoogle Scholar
  101. 101.
    Richard G. Diffusion Phenomena: Cases and Studied. New York: Kluwer Academic/Plenum Publishers, 2001Google Scholar
  102. 102.
    Witten T A, Sander L M. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett, 1981, 47: 1400–1403CrossRefADSGoogle Scholar
  103. 103.
    Vicsek T. Fractal growth phenomena. 2nd ed. Singapore: World Scientific Publishing Co Pte Ltd, 1992MATHGoogle Scholar
  104. 104.
    Sreenivasan K R. Fractal geometry and multifractal measures in fluid mechanics. In: Lnmley J L, et al., eds. Research Trends in Fluid Dynamics. Woodbury, New York: AIP Press, 2000. 263–285Google Scholar
  105. 105.
    Meakin P. The growth of fractal aggregates and their fractal measures. In: Domb C, Lebowitz J L, eds. Phase Transitions and Critical Phenomena. New York: Academic Press, 1988. 355–489Google Scholar
  106. 106.
    Argoul F, Arneodo A, Grasseau G, et al. Self-similarity of diffusion-limited aggregates and electrodeposition clusters. Phys Rev Lett, 1998, 61: 2558CrossRefADSGoogle Scholar
  107. 107.
    Evertsz C J G, Mandolbrot B B. Appendix B: Multifractal measure. In: Pettgen H O, Jurgens H, Saupe D, eds. Chaos and Fractals. Berlin: Springer-Verlag, 1992. 921–953Google Scholar
  108. 108.
    Riewe F. Nonconservative Lagrangian and Hamiltonian mechanics. Phys Rev E, 1996, 53: 1890MathSciNetCrossRefADSGoogle Scholar
  109. 109.
    Riewe F. Mechanics with fractional derivatives. Phys Rev E, 1997, 55(3): 3581MathSciNetCrossRefADSGoogle Scholar
  110. 110.
    Flores E, Osler T J. The tautochrone under arbitrary potentials using fractional derivatives. Am J Phys, 1999, 67: 718–722CrossRefADSGoogle Scholar
  111. 111.
    Agrawal O P. Formulation of Euler-Lagrange equations for fractional variational problems. J Math Anal App, 2002, 272: 368–379MATHCrossRefGoogle Scholar
  112. 112.
    Achar B N N, Hanneken J W, Enck T, et al. Dynamics of the fractional oscillator. Physica A, 2001, 297: 361–367MathSciNetCrossRefADSMATHGoogle Scholar
  113. 113.
    Laskin N. Fractional quantum mechanics and Lévy path integrals. Phys Lett A, 2000, 268: 298–305MATHMathSciNetCrossRefADSGoogle Scholar
  114. 114.
    Laskin N. Fractional quantum mechanics. Phys Rev E, 2003, 62(3): 3135–3145MathSciNetCrossRefADSGoogle Scholar
  115. 115.
    Laskin N. Fractals and quantum mechanics. Chaos, 2000, 10(4): 780–790MATHMathSciNetCrossRefADSGoogle Scholar
  116. 116.
    Laskin N. Fractional Schrödinger equation. Phys Rev E, 2002, 66: 056108Google Scholar
  117. 117.
    Naber M. Time fractional Schrödinger equation. J of Math Phys, 2004, 45(8): 3339–3352MATHMathSciNetCrossRefADSGoogle Scholar
  118. 118.
    Sidharth B G. The scaled universe. Chaos, Solitons and Fractals, 2001, 12: 613–616MATHMathSciNetCrossRefGoogle Scholar
  119. 119.
    Sixdeniers J M, Penson K A, Solomon A I. Mittag-Leffler coherent states. J Phys A: Math Gen, 1999, 32: 7543–7563MathSciNetCrossRefADSMATHGoogle Scholar
  120. 120.
    Bolivar A O. Quantization of the anomalous Brownian motion. Phys Lett A, 2003, 307: 229–232MATHMathSciNetCrossRefADSGoogle Scholar
  121. 121.
    Shepherd K C, Naber M. Fractional differential forms. J Math Phys, 2001, 42: 2203–2212MathSciNetCrossRefADSMATHGoogle Scholar
  122. 122.
    Durand L. Fractional operators and special functions (I): Bessel functions. J Math Phys, 2003, 44(5): 2250–2265MATHMathSciNetCrossRefADSGoogle Scholar
  123. 123.
    Durand L. Fractional operators and special functions (II): Legendre functions. J Math Phys, 2003, 44(5): 2266–2292MATHMathSciNetCrossRefADSGoogle Scholar
  124. 124.
    Carpinteri A, Cornetti P. A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos, Solitons and Fractals, 2003, 13: 85–94CrossRefGoogle Scholar
  125. 125.
    West B J, Bologna M, Grigolini P. Physics of Fractal Operators. New York: Springer-Verlag New York Inc., 2003. 1–35Google Scholar
  126. 126.
    Rocco A, West B J. Fractional calculus and the evolution of fractal phenomena. Physica A, 1999, 265: 536–546CrossRefGoogle Scholar
  127. 127.
    Turcotte D L. The relationship of fractals in geophysics to “The New Science”. Chaos, Solitons and Fractals, 2004, 19: 255–258MATHCrossRefGoogle Scholar
  128. 128.
    Bak P, Paczuski M. The dynamics of fractals. Fractals, 1995, 3(3): 415MathSciNetMATHGoogle Scholar
  129. 129.
    Lindner A, Bonn D, Poire E C, et al. Viscous fingering in non-Newtonian fluids. J Fluid Mech, 2002, 469: 237–256MathSciNetCrossRefADSMATHGoogle Scholar
  130. 130.
    Wolfram S. A New Kind of Science. Champaign: Wolfram Media, 2002MATHGoogle Scholar
  131. 131.
    Mitchell M. Is the universe a universal computer? Science, 2002, 298: 65–68CrossRefGoogle Scholar
  132. 132.
    Palade L I, Attane P, Huilgol R R, et al. Anomalous stability behavior of a properly invariant constitutive equation which generalises fractional derivative models. Inter J Eng Sci, 1999, 37: 315–329MathSciNetCrossRefGoogle Scholar

Copyright information

© Science in China Press 2006

Authors and Affiliations

  1. 1.Institute of Applied Mathematics, School of Math & System ScienceShandong UniversityJinanChina
  2. 2.State Key Laboratory of Turbulence and Complex Systems & Department of Mechanics and Engineering SciencePeking UniversityBeijingChina

Personalised recommendations