Advertisement

Chemical vapor deposition synthesis of two-dimensional freestanding transition metal oxychloride for electronic applications

  • Shengnan Yan
  • Pengfei Wang
  • Chen-Yu Wang
  • Tao Xu
  • Zhuan Li
  • Tianjun Cao
  • Moyu Chen
  • Chen Pan
  • Bin Cheng
  • Litao Sun
  • Shi-Jun LiangEmail author
  • Feng MiaoEmail author
Research Paper
  • 30 Downloads

Abstract

Two-dimensional transition metal oxychlorides (MOCl, M = Fe, Cr, V, Ti, Sc) with the metal-oxygen plane sandwiched by two layers of chloride ions possess many exotic physical properties. Nevertheless, it is of great challenge to grow two-dimensional single-crystal MOCl because polyvalent nature of transition metal elements usually gives rise to mixed oxyhalides compounds with distinct physical properties. Here, we take VOCl as an example to present a solution for synthesizing 2D freestanding MOCl with various thicknesses through chemical vapor deposition (CVD) method. The single crystal and elementary composition as well as elements ratio of as-grown samples have been characterized through measurements of X-ray diffraction, X-ray photoelectron spectroscopy and energy-dispersive spectroscopy, respectively. Furthermore, we demonstrate that 2D VOCl-based memristive devices show low power consumption and excellent device reliability due to the layered-structure and electrically insulating properties of 2D VOCl flakes. Besides, we utilize the feature of multilevel resistive switching that memristive devices exhibit to emulate depression and potentiation of synaptic plasticity. This method developed in this study may open up a new avenue for the growth of 2D MOCl with single crystal and pave the way for high-performance electronic applications.

Keywords

transition metal oxychlorides chemical vapor deposition freestanding memristive device neuromorphic computing 

Notes

Acknowledgements

This work was supported in part by National Key Basic Research Program of China (Grant No. 2015CB921600), National Natural Science Foundation of China (Grant Nos. 61974176, 61574076), Collaborative Innovation Center of Advanced Microstructures, Natural Science Foundation of Jiangsu Province (Grant Nos. BK20180330, BK20150055), and Fundamental Research Funds for the Central Universities (Grant Nos. 020414380122, 020414380084).

Supplementary material

11432_2019_2653_MOESM1_ESM.pdf (980 kb)
Chemical Vapor Deposition Synthesis of Two-dimensional Freestanding Transition Metal Oxychloride for Electronic Applications

References

  1. 1.
    Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science, 2016, 353: aac9439CrossRefGoogle Scholar
  2. 2.
    Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499: 419–425CrossRefGoogle Scholar
  3. 3.
    Sarkar D, Xie X J, Liu W, et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature, 2015, 526: 91–95CrossRefGoogle Scholar
  4. 4.
    Liu C S, Chen H W, Hou X, et al. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat Nanotechnol, 2019, 14: 662–667CrossRefGoogle Scholar
  5. 5.
    Wang M, Cai S H, Pan C, et al. Robust memristors based on layered two-dimensional materials. Nat Electron, 2018, 1: 130–136CrossRefGoogle Scholar
  6. 6.
    Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotech, 2011, 6: 147–150CrossRefGoogle Scholar
  7. 7.
    Gao A Y, Lai J W, Wang Y J, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat Nanotechnol, 2019, 14: 217–222CrossRefGoogle Scholar
  8. 8.
    Yin J B, Tan Z J, Hong H, et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat Commun, 2018, 9: 3311CrossRefGoogle Scholar
  9. 9.
    Wang F, Wang Z X, Yin L, et al. 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection. Chem Soc Rev, 2018, 47: 6296–6341CrossRefGoogle Scholar
  10. 10.
    Li X M, Tao L, Chen Z F, et al. Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Appl Phys Rev, 2017, 4: 021306CrossRefGoogle Scholar
  11. 11.
    Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech, 2012, 7: 699–712CrossRefGoogle Scholar
  12. 12.
    Wang J, Han J Y, Chen X Q, et al. Design strategies for two-dimensional material photodetectors to enhance device performance. Info Mat, 2019, 1: 33–53Google Scholar
  13. 13.
    Li J, Ding Y, Zhang D W, et al. Photodetectors based on two-dimensional materials and their van der Waals heterostructures. Acta Physico-Chimica Sin, 2019, 35: 1058Google Scholar
  14. 14.
    Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotech, 2014, 9: 768–779CrossRefGoogle Scholar
  15. 15.
    Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nat Commun, 2014, 5: 5678CrossRefGoogle Scholar
  16. 16.
    Cai Z Y, Liu B L, Zou X L, et al. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem Rev, 2018, 118: 6091–6133CrossRefGoogle Scholar
  17. 17.
    Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2017, 2: 17033CrossRefGoogle Scholar
  18. 18.
    Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photon, 2016, 10: 216–226CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Yao Y, Sendeku M G, et al. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv Mater, 2019, 31: 1901694CrossRefGoogle Scholar
  20. 20.
    Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater, 2017, 2: 16098CrossRefGoogle Scholar
  21. 21.
    Khazaei M, Ranjbar A, Arai M, et al. Electronic properties and applications of MXenes: a theoretical review. J Mater Chem C, 2017, 5: 2488CrossRefGoogle Scholar
  22. 22.
    Komarek A C, Taetz T, Fernández-Díaz M T, et al. Strong magnetoelastic coupling in VOCl: neutron and synchrotron powder x-ray diffraction study. Phys Rev B, 2009, 79: 104425CrossRefGoogle Scholar
  23. 23.
    Seidel A, Marianetti C A, Chou F C, et al. S = 1/2 chains and spin-Peierls transition in TiOCl. Phys Rev B, 2003, 67: 020405CrossRefGoogle Scholar
  24. 24.
    Shaz M, van Smaalen S, Palatinus L, et al. Spin-Peierls transition in TiOCl. Phys Rev B, 2005, 71: 100405CrossRefGoogle Scholar
  25. 25.
    Zhao L, Fernández-Díaz M T, Tjeng L H, et al. Oxyhalides: a new class of high-TC multiferroic materials. Sci Adv, 2016, 2: e1600353CrossRefGoogle Scholar
  26. 26.
    Miao N H, Xu B, Zhu L G, et al. 2D Intrinsic ferromagnets from van der Waals antiferromagnets. J Am Chem Soc, 2018, 140: 2417–2420CrossRefGoogle Scholar
  27. 27.
    Glawion S, Scholz M R, Zhang Y Z, et al. Electronic structure of the two-dimensional Heisenberg antiferromagnet VOCl: a multiorbital Mott insulator. Phys Rev B, 2009, 80: 155119CrossRefGoogle Scholar
  28. 28.
    Armand M, Coic L, Palvadeau P, et al. The M-0-X transition metal oxyhalides: a new class of lamellar cathode material. J Power Sources, 1978, 3: 137–144CrossRefGoogle Scholar
  29. 29.
    Gao P, Wall C, Zhang L, et al. Vanadium oxychloride as electrode material for sodium ion batteries. Electrochem Commun, 2015, 60: 180–184CrossRefGoogle Scholar
  30. 30.
    Gao P, Zhao X Y, Zhao-Karger Z, et al. Vanadium oxychloride/magnesium electrode systems for chloride ion batteries. ACS Appl Mater Interfaces, 2014, 6: 22430–22435CrossRefGoogle Scholar
  31. 31.
    Gao P, Reddy M A, Mu X, et al. VOCl as a cathode for rechargeable chloride ion batteries. Angew Chem Int Ed, 2016, 55: 4285–4290CrossRefGoogle Scholar
  32. 32.
    Sidwick N V. The chemical elements and their compounds. J Chem Educ, 1950, 27: 529CrossRefGoogle Scholar
  33. 33.
    Ji Q Q, Li C, Wang J L, et al. Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. Nano Lett, 2017, 17: 4908–4916CrossRefGoogle Scholar
  34. 34.
    Zhou J H, Wang L, Yang M Y, et al. Hierarchical VS2 nanosheet assemblies: a universal host material for the reversible storage of Alkali metal ions. Adv Mater, 2017, 29: 1702061CrossRefGoogle Scholar
  35. 35.
    Yuan J T, Wu J J, Hardy W J, et al. Facile synthesis of single crystal vanadium disulfide nanosheets by chemical vapor deposition for efficient hydrogen evolution reaction. Adv Mater, 2015, 27: 5605–5609CrossRefGoogle Scholar
  36. 36.
    Phan H D, Kim Y, Lee J, et al. Ultraclean and direct transfer of a wafer-scale MoS2 thin film onto a plastic substrate. Adv Mater, 2017, 29: 1603928CrossRefGoogle Scholar
  37. 37.
    Chen Y, Gong X L, Gai J G. Progress and challenges in transfer of large-area graphene films. Adv Sci, 2016, 3: 1500343CrossRefGoogle Scholar
  38. 38.
    Park J, Choudhary N, Smith J, et al. Thickness modulated MoS2 grown by chemical vapor deposition for transparent and flexible electronic devices. Appl Phys Lett, 2015, 106: 012104CrossRefGoogle Scholar
  39. 39.
    Lin Y C, Zhang W, Huang J K, et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 2012, 4: 6637–6641CrossRefGoogle Scholar
  40. 40.
    Cullity B D, Weymouth J W. Elements of X-ray diffraction. Am J Phys, 1957, 25: 394–395CrossRefGoogle Scholar
  41. 41.
    Kroemer H. Nobel lecture: quasielectric fields and band offsets: teaching electrons new tricks. Rev Mod Phys, 2001, 73: 783–793CrossRefGoogle Scholar
  42. 42.
    Zhao H, Dong Z P, Tian H, et al. Atomically thin femtojoule memristive device. Adv Mater, 2017, 29: 1703232CrossRefGoogle Scholar
  43. 43.
    Tian H, Zhao L F, Wang X F, et al. Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing. ACS Nano, 2017, 11: 12247–12256CrossRefGoogle Scholar
  44. 44.
    Zhao X L, Liu S, Niu J B, et al. Confining cation injection to enhance CBRAM performance by nanopore graphene layer. Small, 2017, 13: 1603948CrossRefGoogle Scholar
  45. 45.
    Zhao X L, Ma J, Xiao X H, et al. Breaking the current-retention dilemma in cation-based resistive switching devices utilizing graphene with controlled defects. Adv Mater, 2018, 30: 1705193CrossRefGoogle Scholar
  46. 46.
    Ge R J, Wu X H, Kim M, et al. Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett, 2018, 18: 434–441CrossRefGoogle Scholar
  47. 47.
    Qian K, Tay R Y, Nguyen V C, et al. Hexagonal boron nitride thin film for flexible resistive memory applications. Adv Funct Mater, 2016, 26: 2176–2184CrossRefGoogle Scholar
  48. 48.
    Jo S H, Chang T, Ebong I, et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett, 2010, 10: 1297–1301CrossRefGoogle Scholar
  49. 49.
    Ohno T, Hasegawa T, Tsuruoka T, et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat Mater, 2011, 10: 591–595CrossRefGoogle Scholar
  50. 50.
    Shi Y Y, Liang X H, Yuan B, et al. Electronic synapses made of layered two-dimensional materials. Nat Electron, 2018, 1: 458–465CrossRefGoogle Scholar
  51. 51.
    Deng Y, Luo Z, Conrad N J, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano, 2014, 8: 8292–8299CrossRefGoogle Scholar
  52. 52.
    Xu R J, Jang H, Lee M H, et al. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett, 2019, 19: 2411–2417CrossRefGoogle Scholar
  53. 53.
    Sangwan V K, Lee H S, Bergeron H, et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature, 2018, 554: 500–504CrossRefGoogle Scholar
  54. 54.
    Yang J J, Strukov D B, Stewart D R. Memristive devices for computing. Nat Nanotech, 2013, 8: 13–24CrossRefGoogle Scholar
  55. 55.
    Zhu J D, Yang Y C, Jia R D, et al. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv Mater, 2018, 30: 1800195CrossRefGoogle Scholar
  56. 56.
    Yan X, Zhao Q, Chen A P, et al. Vacancy-induced synaptic behavior in 2D WS2 nanosheet based memristor for low-power neuromorphic computing. Small, 2019, 15: 1901423CrossRefGoogle Scholar
  57. 57.
    Zhou F C, Zhou Z, Chen J W, et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat Nanotechnol, 2019, 14: 776–782CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shengnan Yan
    • 1
  • Pengfei Wang
    • 1
  • Chen-Yu Wang
    • 1
  • Tao Xu
    • 2
  • Zhuan Li
    • 1
  • Tianjun Cao
    • 1
  • Moyu Chen
    • 1
  • Chen Pan
    • 1
  • Bin Cheng
    • 1
  • Litao Sun
    • 2
  • Shi-Jun Liang
    • 1
    Email author
  • Feng Miao
    • 1
    Email author
  1. 1.National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjingChina
  2. 2.Key Laboratory of MEMS of Ministry of EducationSoutheast UniversityNanjingChina

Personalised recommendations