Recent progress in devices and circuits based on wafer-scale transition metal dichalcogenides

  • Hongwei Tang
  • Haima Zhang
  • Xinyu Chen
  • Yin Wang
  • Xinzhi Zhang
  • Puyang Cai
  • Wenzhong BaoEmail author


Two-dimensional layered materials (2DLMs) have triggered a broad research thrust over the last decade worldwide. Different from the gapless graphene, transition metal dichalcogenides (TMDs) exhibit versatile bandstructure, with bandgap sizes ranging from semi-metallic to over 2 eV. Therefore, 2D-TMDs can be utilized in various applications from logic to optoelectronic devices. In this review we first introduce the latest developments of the wafer-scale synthesis of continuous TMD films, then we present recent advances in large scale devices and circuits based on TMD films, including logic, memory, optoelectronic and analog devices. We also provide a perspective and a look at the future device applications based on wafer-scale 2D-TMDs.


two-dimensional layered materials transition metal dichalcogenides field effect transistors wafer-scale 



This work was supported by National Key Research and Development Program (Grant No. 2016-YFA0203900), Shanghai Municipal Science and Technology Commission (Grant No. 18JC1410300), and National Natural Science Foundation of China (Grant No. 61874154).


  1. 1.
    Liu Y, Weiss N O, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater, 2016, 1: 16042CrossRefGoogle Scholar
  2. 2.
    Chhowalla M, Liu Z F, Zhang H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem Soc Rev, 2015, 44: 2584–2586CrossRefGoogle Scholar
  3. 3.
    Wang F K, Zhang Y, Gao Y, et al. 2D metal chalcogenides for IR photodetection. Small, 2019, 15: 1901347CrossRefGoogle Scholar
  4. 4.
    Cai Z Y, Liu B, Zou X L, et al. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem Rev, 2018, 118: 6091–6133CrossRefGoogle Scholar
  5. 5.
    Xie C, Mak C, Tao X M, et al. Photodetectors based on two-dimensional layered materials beyond graphene. Adv Funct Mater, 2017, 27: 1603886CrossRefGoogle Scholar
  6. 6.
    Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6: 147–150CrossRefGoogle Scholar
  7. 7.
    Butler S Z, Hollen S M, Cao L Y, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7: 2898–2926CrossRefGoogle Scholar
  8. 8.
    Yu L L, El-Damak D, Radhakrishna U, et al. Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics. Nano Lett, 2016, 16: 6349–6356CrossRefGoogle Scholar
  9. 9.
    Wachter S, Polyushkin D K, Bethge O, et al. A microprocessor based on a two-dimensional semiconductor. Nat Commun, 2017, 8: 14948CrossRefGoogle Scholar
  10. 10.
    Liu C S, Yan X, Song X F, et al. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat Nanotechnol, 2018, 13: 404–410CrossRefGoogle Scholar
  11. 11.
    Liu C S, Chen H W, Hou X, et al. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat Nanotechnol, 2019, 14: 662–667CrossRefGoogle Scholar
  12. 12.
    Lan Y W, Chen P C, Lin Y Y, et al. Scalable fabrication of a complementary logic inverter based on MoS2 fin-shaped field effect transistors. Nanoscale Horiz, 2019, 4: 683–688CrossRefGoogle Scholar
  13. 13.
    Chhowalla M, Shin H S, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013, 5: 263–275CrossRefGoogle Scholar
  14. 14.
    Shivayogimath A, Thomsen J D, Mackenzie D M A, et al. A universal approach for the synthesis of two-dimensional binary compounds. Nat Commun, 2019, 10: 2957CrossRefGoogle Scholar
  15. 15.
    Wang Y L, Li L F, Yao W, et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett, 2015, 15: 4013–4018CrossRefGoogle Scholar
  16. 16.
    He Q Y, Li P J, Wu Z H, et al. Molecular beam epitaxy scalable growth of wafer-scale continuous semiconducting monolayer MoTe2 on inert amorphous dielectrics. Adv Mater, 2019, 349: 1901578CrossRefGoogle Scholar
  17. 17.
    Ciarrocchi A, Avsar A, Ovchinnikov D, et al. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat Commun, 2018, 9: 919CrossRefGoogle Scholar
  18. 18.
    Baugher B W H, Churchill H O H, Yang Y, et al. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett, 2013, 13: 4212–4216CrossRefGoogle Scholar
  19. 19.
    Li H, Wu J, Yin Z Y, et al. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res, 2014, 47: 1067–1075CrossRefGoogle Scholar
  20. 20.
    Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 2010, 105: 136805CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Ye J, Matsuhashi Y, et al. Ambipolar MoS2 thin flake transistors. Nano Lett, 2012, 12: 1136–1140CrossRefGoogle Scholar
  22. 22.
    Martin S J, Walker A B, Campbell A J, et al. Electrical transport characteristics of single-layer organic devices from theory and experiment. J Appl Phys, 2005, 98: 063709CrossRefGoogle Scholar
  23. 23.
    Qian X F, Liu J W, Fu L, et al. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science, 2014, 346: 1344–1347CrossRefGoogle Scholar
  24. 24.
    Li D, Chen M Y, Sun Z Z, et al. Two-dimensional non-volatile programmable p-n junctions. Nat Nanotechnol, 2017, 12: 901–906CrossRefGoogle Scholar
  25. 25.
    Gao Y, Liu Z B, Sun D M, et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat Commun, 2015, 6: 8569CrossRefGoogle Scholar
  26. 26.
    Lee Y H, Zhang X Q, Zhang W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater, 2012, 24: 2320–2325CrossRefGoogle Scholar
  27. 27.
    Xu H, Zhang H M, Guo Z X, et al. High-performance wafer-scale MoS2 transistors toward practical application. Small, 2018, 14: 1803465CrossRefGoogle Scholar
  28. 28.
    Xu H, Zhang H M, Liu Y W, et al. Controlled doping of wafer-scale PtSe2 films for device application. Adv Funct Mater, 2019, 29: 1805614CrossRefGoogle Scholar
  29. 29.
    Fu D Y, Zhao X X, Zhang Y Y, et al. Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride. J Am Chem Soc, 2017, 139: 9392–9400CrossRefGoogle Scholar
  30. 30.
    Poh S M, Zhao X, Tan S J R, et al. Molecular beam epitaxy of highly crystalline MoSe2 on hexagonal boron nitride. ACS Nano, 2018, 12: 7562–7570CrossRefGoogle Scholar
  31. 31.
    Nakano M, Wang Y, Kashiwabara Y, et al. Layer-by-layer epitaxial growth of scalable WSe2 on sapphire by molecular beam epitaxy. Nano Lett, 2017, 17: 5595–5599CrossRefGoogle Scholar
  32. 32.
    Kang K, Xie S E, Huang L J, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015, 520: 656–660CrossRefGoogle Scholar
  33. 33.
    Zhang X T, Choudhury T H, Chubarov M, et al. Diffusion-controlled epitaxy of large area coalesced WSe2 Monolayers on sapphire. Nano Lett, 2018, 18: 1049–1056CrossRefGoogle Scholar
  34. 34.
    Song J G, Park J, Lee W, et al. Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. ACS Nano, 2013, 7: 11333–11340CrossRefGoogle Scholar
  35. 35.
    Shi M L, Chen L, Zhang T B, et al. Top-down integration of molybdenum disulfide transistors with wafer-scale uniformity and layer controllability. Small, 2017, 13: 1603157CrossRefGoogle Scholar
  36. 36.
    Yang P F, Zou X L, Zhang Z P, et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat Commun, 2018, 9: 979CrossRefGoogle Scholar
  37. 37.
    Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photon, 2016, 10: 216–226CrossRefGoogle Scholar
  38. 38.
    Gong C H, Hu K, Wang X P, et al. 2D nanomaterial arrays for electronics and optoelectronics. Adv Funct Mater, 2018, 28: 1706559CrossRefGoogle Scholar
  39. 39.
    Xia F N, Wang H, Xiao D, et al. Two-dimensional material nanophotonics. Nat Photon, 2014, 8: 899–907CrossRefGoogle Scholar
  40. 40.
    Huo N J, Konstantatos G. Recent progress and future prospects of 2D-based photodetectors. Adv Mater, 2018, 30: 1801164CrossRefGoogle Scholar
  41. 41.
    Lei S, Wen F, Li B, et al. Optoelectronic memory using two-dimensional materials. Nano Lett, 2015, 15: 259–265CrossRefGoogle Scholar
  42. 42.
    Kshirsagar C U, Xu W C, Su Y, et al. Dynamic memory cells using MoS2 field-effect transistors demonstrating femtoampere leakage currents. ACS Nano, 2016, 10: 8457–8464CrossRefGoogle Scholar
  43. 43.
    Zhang E, Wang W Y, Zhang C, et al. Tunable charge-trap memory based on few-layer MoS2. ACS Nano, 2015, 9: 612–619CrossRefGoogle Scholar
  44. 44.
    Wang X D, Liu C S, Chen Y, et al. Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe2 channels. 2D Mater, 2017, 4: 025036CrossRefGoogle Scholar
  45. 45.
    Wang H, Yu L L, Lee Y H, et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett, 2012, 12: 4674–4680CrossRefGoogle Scholar
  46. 46.
    Lee Y, Park S, Kim H, et al. Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging. Nanoscale, 2015, 7: 11909–11914CrossRefGoogle Scholar
  47. 47.
    van der Zande A M, Huang P Y, Chenet D A, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater, 2013, 12: 554–561CrossRefGoogle Scholar
  48. 48.
    Yu H, Liao M Z, Zhao W J, et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano, 2017, 11: 12001–12007CrossRefGoogle Scholar
  49. 49.
    Karvonen L, Säynätjoki A, Huttunen M J, et al. Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy. Nat Commun, 2017, 8: 15714CrossRefGoogle Scholar
  50. 50.
    Najmaei S, Liu Z, Zhou W, et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater, 2013, 12: 754–759CrossRefGoogle Scholar
  51. 51.
    Liu Z, Amani M, Najmaei S, et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat Commun, 2014, 5: 5246CrossRefGoogle Scholar
  52. 52.
    Fei L F, Lei S J, Zhang W B, et al. Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. Nat Commun, 2016, 7: 12206CrossRefGoogle Scholar
  53. 53.
    Smithe K K H, Suryavanshi S, Rojo M M, et al. Low variability in synthetic monolayer MoS2 devices. ACS Nano, 2017, 11: 8456–8463CrossRefGoogle Scholar
  54. 54.
    Ling X, Lee Y H, Lin Y X, et al. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett, 2014, 14: 464–472CrossRefGoogle Scholar
  55. 55.
    Lim Y R, Song W, Han J K, et al. Wafer-scale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Adv Mater, 2016, 28: 5025–5030CrossRefGoogle Scholar
  56. 56.
    Huang J K, Pu J, Hsu C L, et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano, 2014, 8: 923–930CrossRefGoogle Scholar
  57. 57.
    Bao W Z, Cai X H, Kim D H, et al. High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl Phys Lett, 2013, 102: 042104CrossRefGoogle Scholar
  58. 58.
    Kobayashi Y, Sasaki S, Mori S, et al. Growth and optical properties of high-quality monolayer WS2 on graphite. ACS Nano, 2015, 9: 4056–4063CrossRefGoogle Scholar
  59. 59.
    Tarasov A, Campbell P M, Tsai M Y, et al. Highly uniform trilayer molybdenum disulfide for wafer-scale device fabrication. Adv Funct Mater, 2014, 24: 6389–6400CrossRefGoogle Scholar
  60. 60.
    Lin Y C, Zhang W J, Huang J K, et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 2012, 4: 6637–6641CrossRefGoogle Scholar
  61. 61.
    Zhang Q, Wang X F, Shen S H, et al. Simultaneous synthesis and integration of two-dimensional electronic components. Nat Electron, 2019, 2: 164–170CrossRefGoogle Scholar
  62. 62.
    Song X F, Zan W, Xu H, et al. A novel synthesis method for large-area MoS2 film with improved electrical contact. 2D Mater, 2017, 4: 025051CrossRefGoogle Scholar
  63. 63.
    Luisier M, Lundstrom M, Antoniadis D A, et al. Ultimate device scaling: intrinsic performance comparisons of carbon-based, InGaAs, and Si field-effect transistors for 5 nm gate length. In: Proceedings of International Electron Devices Meeting, 2011Google Scholar
  64. 64.
    Low T, Li M F, Samudra G, et al. Modeling study of the impact of surface roughness on silicon and germanium UTB MOSFETs. IEEE Trans Electron Device, 2005, 52: 2430–2439CrossRefGoogle Scholar
  65. 65.
    Yu X, Kang J, Takenaka M, et al. Evaluation of mobility degradation factors and performance improvement of ultrathin-body germanium-on-insulator MOSFETs by GOI thinning using plasma oxidation. IEEE Trans Electron Device, 2017, 64: 1418–1425CrossRefGoogle Scholar
  66. 66.
    Jin S, Fischetti M V, Tang T W. Modeling of surface-roughness scattering in ultrathin-body SOI MOSFETs. IEEE Trans Electron Device, 2007, 54: 2191–2203CrossRefGoogle Scholar
  67. 67.
    Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 2014, 9: 768–779CrossRefGoogle Scholar
  68. 68.
    Thiele S, Kinberger W, Granzner R, et al. The prospects of transition metal dichalcogenides for ultimately scaled CMOS. Solid-State Electron, 2018, 143: 2–9CrossRefGoogle Scholar
  69. 69.
    Cao W, Jiang J K, Xie X J, et al. 2-D layered materials for next-generation electronics: opportunities and challenges. IEEE Trans Electron Device, 2018, 65: 4109–4121CrossRefGoogle Scholar
  70. 70.
    Song X F, Guo Z X, Zhang Q C, et al. Progress of large-scale synthesis and electronic device application of two-dimensional transition metal dichalcogenides. Small, 2017, 13: 1700098CrossRefGoogle Scholar
  71. 71.
    Lemme M C, Li L J, Palacios T, et al. Two-dimensional materials for electronic applications. MRS Bull, 2014, 39: 711–718CrossRefGoogle Scholar
  72. 72.
    Kwon H, Jeon P J, Kim J S, et al. Large scale MoS2 nanosheet logic circuits integrated by photolithography on glass. 2D Mater, 2016, 3: 044001CrossRefGoogle Scholar
  73. 73.
    Yu L, Zubair A, Santos E J G, et al. High-performance WSe2 complementary metal oxide semiconductor technology and integrated circuits. Nano Lett, 2015, 15: 4928–4934CrossRefGoogle Scholar
  74. 74.
    Sachid A B, Tosun M, Desai S B, et al. Monolithic 3D CMOS using layered semiconductors. Adv Mater, 2016, 28: 2547–2554CrossRefGoogle Scholar
  75. 75.
    Liu Y D, Ang K W. Monolithically integrated flexible black phosphorus complementary inverter circuits. ACS Nano, 2017, 11: 7416–7423CrossRefGoogle Scholar
  76. 76.
    Desai S B, Madhvapathy S R, Sachid A B, et al. MoS2 transistors with 1-nanometer gate lengths. Science, 2016, 354: 99–102CrossRefGoogle Scholar
  77. 77.
    Allain A, Kang J, Banerjee K, et al. Electrical contacts to two-dimensional semiconductors. Nat Mater, 2015, 14: 1195–1205CrossRefGoogle Scholar
  78. 78.
    Das S, Chen H Y, Penumatcha A V, et al. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett, 2013, 13: 100–105CrossRefGoogle Scholar
  79. 79.
    Yu L L, Lee Y H, Ling X, et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett, 2014, 14: 3055–3063CrossRefGoogle Scholar
  80. 80.
    Kappera R, Voiry D, Yalcin S E, et al. Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2. APL Mater, 2014, 2: 092516CrossRefGoogle Scholar
  81. 81.
    Lee S, Tang A, Aloni S, et al. Statistical study on the Schottky barrier reduction of tunneling contacts to CVD synthesized MoS2. Nano Lett, 2016, 16: 276–281CrossRefGoogle Scholar
  82. 82.
    Hu Z H, Wu Z T, Han C, et al. Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem Soc Rev, 2018, 47: 3100–3128CrossRefGoogle Scholar
  83. 83.
    Kim H G, Lee H B R. Atomic layer deposition on 2D materials. Chem Mater, 2017, 29: 3809–3826CrossRefGoogle Scholar
  84. 84.
    McDonnell S, Brennan B, Azcatl A, et al. HfO2 on MoS2 by atomic layer deposition: adsorption mechanisms and thickness scalability. ACS Nano, 2013, 7: 10354–10361CrossRefGoogle Scholar
  85. 85.
    Zou X M, Wang J L, Chiu C H, et al. Interface engineering for high-performance top-gated MoS2 field-effect transistors. Adv Mater, 2014, 26: 6255–6261CrossRefGoogle Scholar
  86. 86.
    Yang W, Sun Q Q, Geng Y, et al. The integration of sub-10 nm gate oxide on MoS2 with ultra low leakage and enhanced mobility. Sci Rep, 2015, 5: 11921CrossRefGoogle Scholar
  87. 87.
    Azcatl A, McDonnell S, Kc S, et al. MoS2 functionalization for ultra-thin atomic layer deposited dielectrics. Appl Phys Lett, 2014, 104: 111601CrossRefGoogle Scholar
  88. 88.
    Pu J, Yomogida Y, Liu K K, et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett, 2012, 12: 4013–4017CrossRefGoogle Scholar
  89. 89.
    Pu J, Funahashi K, Chen C H, et al. Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv Mater, 2016, 28: 4111–4119CrossRefGoogle Scholar
  90. 90.
    Dathbun A, Kim Y, Kim S, et al. Large-area CVD-grown sub-2 V ReS2 transistors and logic gates. Nano Lett, 2017, 17: 2999–3005CrossRefGoogle Scholar
  91. 91.
    Zan W, Zhang Q C, Xu H, et al. Large capacitance and fast polarization response of thin electrolyte dielectrics by spin coating for two-dimensional MoS2 devices. Nano Res, 2018, 11: 3739–3745CrossRefGoogle Scholar
  92. 92.
    Li S L, Tsukagoshi K, Orgiu E, et al. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem Soc Rev, 2016, 45: 118–151CrossRefGoogle Scholar
  93. 93.
    Gong C, Colombo L, Wallace R M, et al. The unusual mechanism of partial fermi level pinning at metal-MoS2 interfaces. Nano Lett, 2014, 14: 1714–1720CrossRefGoogle Scholar
  94. 94.
    Kang J H, Liu W, Sarkar D, et al. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys Rev X, 2014, 4: 031005Google Scholar
  95. 95.
    Ma N, Jena D. Charge scattering and mobility in atomically thin semiconductors. Phys Rev X, 2014, 4: 011043Google Scholar
  96. 96.
    Schwierz F. Graphene transistors: status, prospects, and problems. Proc IEEE, 2013, 101: 1567–1584CrossRefGoogle Scholar
  97. 97.
    Amani M, Burke R A, Proie R M, et al. Flexible integrated circuits and multifunctional electronics based on single atomic layers of MoS2 and graphene. Nanotechnology, 2015, 26: 115202CrossRefGoogle Scholar
  98. 98.
    Zhang T B, Liu H, Wang Y, et al. Fast-response inverter arrays built on wafer-scale MoS2 by atomic layer deposition. Phys Status Solidi RRL, 2019, 13: 1900018CrossRefGoogle Scholar
  99. 99.
    Zhang S M, Xu H, Liao F Y, et al. Wafer-scale transferred multilayer MoS2 for high performance field effect transistors. Nanotechnology, 2019, 30: 174002CrossRefGoogle Scholar
  100. 100.
    Das T, Chen X, Jang H, et al. Highly flexible hybrid CMOS inverter based on Si nanomembrane and molybdenum disulfide. Small, 2016, 12: 5720–5727CrossRefGoogle Scholar
  101. 101.
    Chiu M H, Tang H L, Tseng C C, et al. Metal-guided selective growth of 2D materials: demonstration of a bottom-up CMOS inverter. Adv Mater, 2019, 31: 1900861CrossRefGoogle Scholar
  102. 102.
    Liu W, Kang J H, Sarkar D, et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett, 2013, 13: 1983–1990CrossRefGoogle Scholar
  103. 103.
    Tosun M, Chuang S, Fang H, et al. High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano, 2014, 8: 4948–4953CrossRefGoogle Scholar
  104. 104.
    Lin Z Y, Liu Y, Halim U, et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature, 2018, 562: 254–258CrossRefGoogle Scholar
  105. 105.
    Yu L, El-Damak D, Ha S, et al. Enhancement-mode single-layer CVD MoS2 FET technology for digital electronics. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2015Google Scholar
  106. 106.
    Yang R, Li H, Smithe K K H, et al. Ternary content-addressable memory with MoS2 transistors for massively parallel data search. Nat Electron, 2019, 2: 108–114CrossRefGoogle Scholar
  107. 107.
    Liu J Q, Zeng Z Y, Cao X H, et al. Preparation of MoS2-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. Small, 2012, 8: 3517–3522CrossRefGoogle Scholar
  108. 108.
    Huang X, Zheng B, Liu Z D, et al. Coating two-dimensional nanomaterials with metal-organic frameworks. ACS Nano, 2014, 8: 8695–8701CrossRefGoogle Scholar
  109. 109.
    Yin Z Y, Zeng Z Y, Liu J Q, et al. Memory devices using a mixture of MoS2 and graphene oxide as the active layer. Small, 2013, 9: 727–731CrossRefGoogle Scholar
  110. 110.
    Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol, 2013, 8: 497–501CrossRefGoogle Scholar
  111. 111.
    Huo N, Konstantatos G. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 PN homojunction. Nat Commun, 2017, 8: 572CrossRefGoogle Scholar
  112. 112.
    Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7: 699–712CrossRefGoogle Scholar
  113. 113.
    Chang Y H, Zhang W, Zhu Y, et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano, 2014, 8: 8582–8590CrossRefGoogle Scholar
  114. 114.
    Zhou Y H, An H N, Gao C, et al. UV-Vis-NIR photodetector based on monolayer MoS2. Mater Lett, 2019, 237: 298–302CrossRefGoogle Scholar
  115. 115.
    Xue Y Z, Zhang Y P, Liu Y, et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano, 2016, 10: 573–580CrossRefGoogle Scholar
  116. 116.
    Kim Y, Bark H, Kang B, et al. Wafer-scale substitutional doping of monolayer MoS2 films for high-performance optoelectronic devices. ACS Appl Mater Interfaces, 2019, 11: 12613–12621CrossRefGoogle Scholar
  117. 117.
    Agarwal A, Lang J. Foundations of Analog and Digital Electronic Circuits. Amsterdam: Elsevier 2005zbMATHGoogle Scholar
  118. 118.
    Cheng R, Bai J W, Liao L, et al. High-frequency self-aligned graphene transistors with transferred gate stacks. Proc Natl Acad Sci USA, 2012, 109: 11588–11592CrossRefGoogle Scholar
  119. 119.
    Sanne A, Ghosh R, Rai A, et al. Radio frequency transistors and circuits based on CVD MoS2. Nano Lett, 2015, 15: 5039–5045CrossRefGoogle Scholar
  120. 120.
    Chang H Y, Yogeesh M N, Ghosh R, et al. Large-area monolayer MoS2 for flexible low-power RF nanoelectronics in the GHz regime. Adv Mater, 2016, 28: 1818–1823CrossRefGoogle Scholar
  121. 121.
    Gao Q G, Zhang Z F, Xu X L, et al. Scalable high performance radio frequency electronics based on large domain bilayer MoS2. Nat Commun, 2018, 9: 4778CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hongwei Tang
    • 1
  • Haima Zhang
    • 1
  • Xinyu Chen
    • 1
  • Yin Wang
    • 1
  • Xinzhi Zhang
    • 1
  • Puyang Cai
    • 1
  • Wenzhong Bao
    • 1
    Email author
  1. 1.State Key Laboratory of ASIC and System, School of MicroelectronicsFudan UniversityShanghaiChina

Personalised recommendations