Advertisement

Nonvolatile memristor based on heterostructure of 2D room-temperature ferroelectric α-In2Se3 and WSe2

  • Huai Yang
  • Mengqi Xiao
  • Yu Cui
  • Longfei Pan
  • Kai Zhao
  • Zhongming WeiEmail author
Research Paper Special Focus on Two-Dimensional Materials and Device Applications
  • 33 Downloads

Abstract

Two-dimensional (2D) ferroelectricity is considered to have significant potential for information storage in the future. Semiconducting ferroelectrics that are stable at room temperature afford many possibilities for the assembly of various high-performance heterostructures and fabricating multifuntional devices. Herein, we report the synthesis of a stable van der Waals (vdW) single-crystal semiconductor α-In2Se3. Piezoresponse force microscopy (PFM) measurements demonstrated the out-of-plane ferroelectricity in ∼15 layers α-In2Se3 at room temperature. Both ferroelectric domains with opposite polarization and the tested amplitude and phase curve proved that this semiconductor exhibits hysteresis behavior during polarization. In the α-In2Se3/WSe2 vertical heterostructure device, the switchable diode effect and nonvolatile memory phenomenon showed a high on/off ratio and a small switching voltage. The distinct resistance switches were further analyzed by band alignment of the heterostructure under different polarizations by first principle calculations. Nonvolatile memory based on vdW ferroelectric heterostructure could provide a novel platform for developing 2D room-temperature ferroelectrics in information storage.

Keywords

2D ferroelectricity α-In2Se3 heterostructure nonvolatile memristor polarization 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61622406, 61571415), National Key Research and Development Program of China (Grant Nos. 2017YFA0207500, 2016YFB0700700), and Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000).

References

  1. 1.
    Garcia V, Fusil S, Bouzehouane K, et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature, 2009, 460: 81–84CrossRefGoogle Scholar
  2. 2.
    Wen Z, Li C, Wu D, et al. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat Mater, 2013, 12: 617–621CrossRefGoogle Scholar
  3. 3.
    Xu R J, Liu S, Grinberg I, et al. Ferroelectric polarization reversal via successive ferroelastic transitions. Nat Mater, 2015, 14: 79–86CrossRefGoogle Scholar
  4. 4.
    Ge R J, Wu X H, Kim M, et al. Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett, 2018, 18: 434–441CrossRefGoogle Scholar
  5. 5.
    Scott J F. Applications of modern ferroelectrics. Science, 2007, 315: 954–959CrossRefGoogle Scholar
  6. 6.
    Morris M R, Pendlebury S R, Hong J, et al. Effect of internal electric fields on charge carrier dynamics in a ferroelectric material for solar energy conversion. Adv Mater, 2016, 28: 7123–7128CrossRefGoogle Scholar
  7. 7.
    Jones A M, Yu H, Ghimire N J, et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat Nanotech, 2013, 8: 634–638CrossRefGoogle Scholar
  8. 8.
    Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene. Rev Mod Phys, 2009, 81: 109–162CrossRefGoogle Scholar
  9. 9.
    Wang Y X, Xu N, Li D Y, et al. Thermal properties of two dimensional layered materials. Adv Funct Mater, 2017, 27: 1604134CrossRefGoogle Scholar
  10. 10.
    Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546: 270–273CrossRefGoogle Scholar
  11. 11.
    Si M, Su C J, Jiang C, et al. Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat Nanotech, 2018, 13: 24–28CrossRefGoogle Scholar
  12. 12.
    Wang X D, Zhou J, Song J H, et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett, 2006, 6: 2768–2772CrossRefGoogle Scholar
  13. 13.
    Tian B B, Liu L, Yan M, et al. A robust artificial synapse based on organic ferroelectric polymer. Adv Electron Mater, 2019, 5: 1800600CrossRefGoogle Scholar
  14. 14.
    Boyn S, Grollier J, Lecerf G, et al. Learning through ferroelectric domain dynamics in solid-state synapses. Nat Commun, 2017, 8: 14736CrossRefGoogle Scholar
  15. 15.
    Chang K, Liu J W, Lin H C, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353: 274–278CrossRefGoogle Scholar
  16. 16.
    Si M W, Liao P Y, Qiu G, et al. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure. ACS Nano, 2018, 12: 6700–6705CrossRefGoogle Scholar
  17. 17.
    Liu F C, You L, Seyler K L, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat Commun, 2016, 7: 12357CrossRefGoogle Scholar
  18. 18.
    Ding W J, Zhu J B, Wang Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat Commun, 2017, 8: 14956CrossRefGoogle Scholar
  19. 19.
    Zhou J D, Zeng Q S, Lv D H, et al. Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett, 2015, 15: 6400–6405CrossRefGoogle Scholar
  20. 20.
    Tao X, Gu Y. Crystalline-crystalline phase transformation in two-dimensional In2 Se3 thin layers. Nano Lett, 2013, 13: 3501–3505CrossRefGoogle Scholar
  21. 21.
    Cui J L, Wang L, Du Z L, et al. High thermoelectric performance of a defect in α-In2Se3-based solid solution upon substitution of Zn for In. J Mater Chem C, 2015, 3: 9069–9075CrossRefGoogle Scholar
  22. 22.
    Ho C H, Lin M H, Pan C C. Optical-memory switching and oxygen detection based on the CVT grown γ and α-phase In2Se3. Sens Actuat B-Chem, 2015, 209: 811–819CrossRefGoogle Scholar
  23. 23.
    Cui C, Hu W J, Yan X, et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett, 2018, 18: 1253–1258CrossRefGoogle Scholar
  24. 24.
    Xiao J, Zhu H Y, Wang Y, et al. Intrinsic two-dimensional ferroelectricity with Dipole locking. Phys Rev Lett, 2018, 120: 227601CrossRefGoogle Scholar
  25. 25.
    Zhou Y, Wu D, Zhu Y H, et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett, 2017, 17: 5508–5513CrossRefGoogle Scholar
  26. 26.
    Wan S Y, Li Y, Li W, et al. Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers. Nanoscale, 2018, 10: 14885–14892CrossRefGoogle Scholar
  27. 27.
    Lewandowska R, Bacewicz R, Filipowicz J, et al. Raman scattering in α-In2Se3 crystals. Mater Res Bull, 2001, 36: 2577–2583CrossRefGoogle Scholar
  28. 28.
    Tian B B, Wang J L, Fusil S, et al. Tunnel electroresistance through organic ferroelectrics. Nat Commun, 2016, 7: 11502CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Huai Yang
    • 1
    • 2
  • Mengqi Xiao
    • 1
    • 2
  • Yu Cui
    • 1
    • 2
  • Longfei Pan
    • 1
    • 2
  • Kai Zhao
    • 1
    • 2
  • Zhongming Wei
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Superlattices and Microstructures, Institute of SemiconductorsChinese Academy of SciencesBeijingChina
  2. 2.Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations