Detail-preserving smoke simulation using an efficient high-order numerical scheme

  • Jian Zhu
  • Zhuo YangEmail author
  • Hanqiu Sun
  • Enhua Wu
  • Ruichu Cai
  • Zhifeng Hao



This work was supported by National Natural Science Foundation of China (Grant Nos. 61502109, 61672502, 61402038), Natural Science Foundation of Guangdong Province (Grant Nos. 2016A030310342, 2018A030313802), National Key R&D Program of China (Grant No. 2017YFB1002701), Science and Technology Planning Project of Guangdong Province (Grant Nos. 2017B010110015, 2017B010110007), Open Research Fund of Guangdong Provincial Key Laboratory of Cyber-Physical System (Grant No. 2016B030301008).

Supplementary material

11432_2018_9889_MOESM1_ESM.pdf (4.6 mb)
Detail-preserving smoke simulation using an efficient high-order numerical scheme

Supplementary material, approximately 27.7 MB.


  1. 1.
    Huang Z P, Kavan L, Li W K, et al. Reducing numerical dissipation in smoke simulation. Graph Model, 2015, 78: 10–25CrossRefGoogle Scholar
  2. 2.
    Kim B, Liu Y, Llamas I, et al. Advections with significantly reduced dissipation and diffusion. IEEE Trans Vis Comput Graph, 2007, 13: 135–144CrossRefGoogle Scholar
  3. 3.
    Selle A, Fedkiw R, Kim B M, et al. An unconditionally stable MacCormack method. J Sci Comput, 2008, 35: 350–371MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fedkiw R, Stam J, Jensen H W. Visual simulation of smoke. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 01), Los Angeles, 2001. 15–22Google Scholar
  5. 5.
    Wang Z J, Fidkowski K, Abgrall R, et al. High-order CFD methods: current status and perspective. Int J Numer Meth Fluids, 2013, 72: 811–845MathSciNetCrossRefGoogle Scholar
  6. 6.
    Takahashi T, Fujii H, Kunimatsu A, et al. Realistic animation of fluid with splash and foam. Comput Graph Forum, 2003, 22: 391–400CrossRefGoogle Scholar
  7. 7.
    Song O Y, Shin H, Ko H S. Stable but nondissipative water. ACM Trans Graph, 2005, 24: 81–97CrossRefGoogle Scholar
  8. 8.
    Kim D, Song O Y, Ko H S. A semi-lagrangian CIP fluid solver without dimensional splitting. Comput Graph Forum, 2008, 27: 467–475CrossRefGoogle Scholar
  9. 9.
    Fukumitsu K, Yabe T, Ogata Y, et al. A new directional-splitting CIP interpolation with high accuracy and low memory consumption. J Comput Phys, 2015, 286: 62–69MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jian Zhu
    • 1
  • Zhuo Yang
    • 1
    Email author
  • Hanqiu Sun
    • 4
  • Enhua Wu
    • 2
    • 3
  • Ruichu Cai
    • 1
  • Zhifeng Hao
    • 1
    • 5
  1. 1.School of Computer ScienceGuangdong University of TechnologyGuangzhouChina
  2. 2.State Key Laboratory of Computer Science, Institute of SoftwareChinese Academy of SciencesBeijingChina
  3. 3.Faculty of Science and TechnologyUniversity of MacauMacauChina
  4. 4.Institute of Space and Earth Info. Sciencethe Chinese University of Hong KongHong KongChina
  5. 5.School of Mathematics and Big DataFoshan UniversityFoshanChina

Personalised recommendations