Advertisement

Total ionizing dose effects on graphene-based charge-trapping memory

  • Kai Xi
  • Jinshun BiEmail author
  • Sandip Majumdar
  • Bo Li
  • Jing Liu
  • Yannan Xu
  • Ming Liu
Research Paper
  • 4 Downloads

Abstract

This study investigates the total ionizing dose effects in graphene-based charge-trapping memory (GCTM) capacitors by using 60Co γ-irradiation. Electrical properties including CV hysteresis window, gate leakage current, and flat band voltage shifts are evaluated with ionizing dose levels up to 1 Mrad (Si). The CV hysteresis memory window is hardly affected by the irradiation. The gate leakage current increases with the increase of ionizing dose due to the multiple-trap assisted tunneling mechanism. Significant electrical degrade of the devices in programmed and erased states has been observed with the increase of the dose levels. Mechanisms behind the degradation are attributed to the photo-emission in the graphene nanodisc charge-trapping sets, radiation-induced holes trapping in the peripheral oxides, and the recombination of the stored electrons with the radiation-induced holes.

Keywords

graphene non-volatile memories radiation trap-assisted tunneling leakage current 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61704188, 616340084), Youth Innovation Promotion Association CAS (Grant No. 2014101), and International Cooperation Project of CAS, Austrian-Chinese Cooperative R&D Projects (Grant No. 172511KYSB20150006).

References

  1. 1.
    Gerardin S, Bagatin M, Paccagnella A, et al. Radiation effects in flash memories. IEEE Trans Nucl Sci, 2013, 60: 1953–1969CrossRefGoogle Scholar
  2. 2.
    Petrov A, Vasil’ev A, Ulanova A, et al. Flash memory cells data loss caused by total ionizing dose and heavy ions. Open Phys, 2014, 12: 725–729CrossRefGoogle Scholar
  3. 3.
    Gerardin S, Paccagnella A. Present and future non-volatile memories for space. IEEE Trans Nucl Sci, 2010, 57: 3016–3039Google Scholar
  4. 4.
    Liu M H, Lu W, Ma W Y, et al. Total ionizing dose effects of domestic SiGe HBTs under different dose rates. Chin Phys C, 2016, 40: 036003CrossRefGoogle Scholar
  5. 5.
    Bi J S, Xu Y N, Xu G B, et al. Total ionization dose effects on charge-trapping memory with Al2O3/HfO2/Al2O trilayer structure. IEEE Trans Nucl Sci, 2018, 65: 200–205CrossRefGoogle Scholar
  6. 6.
    Xi K, Bi J S, Hu Y, et al. Impact of γ-ray irradiation on graphene nano-disc non-volatile memory. Appl Phys Lett, 2018, 113: 164103CrossRefGoogle Scholar
  7. 7.
    Xu Y N, Bi J S, Xu G B, et al. Total ionizing dose effects and annealing behaviors of HfO2-based MOS capacitor. Sci China Inf Sci, 2017, 60: 120401CrossRefGoogle Scholar
  8. 8.
    Bi J S, Han Z S, Zhang E X, et al. The impact of X-ray and proton irradiation on HfO2/Hf-based bipolar resistive memories. IEEE Trans Nucl Sci, 2013, 60: 4540–4546CrossRefGoogle Scholar
  9. 9.
    Bi J S, Zeng C B, Gao L C, et al. Estimation of pulsed laser-induced single event transient in a partially depleted silicon-on-insulator 0.18-µm MOSFET. Chin Phys B, 2014, 23: 088505CrossRefGoogle Scholar
  10. 10.
    Li X J, Yang J Q, Fleetwood D M, et al. Hydrogen soaking, displacement damage effects, and charge yield in gated lateral bipolar junction transistors. IEEE Trans Nucl Sci, 2018, 65: 1271–1276CrossRefGoogle Scholar
  11. 11.
    Wang Z J, Xue Y Y, Chen W, et al. Fixed pattern noise and temporal noise degradation induced by radiation effects in pinned photodiode CMOS image sensors. IEEE Trans Nucl Sci, 2018, 65: 1264–1270CrossRefGoogle Scholar
  12. 12.
    Oldham T R, Ladbury R L, Friendlich M, et al. SEE and TID characterization of an advanced commercial 2 Gbit NAND flash nonvolatile memory. IEEE Trans Nucl Sci, 2006, 53: 3217–3222CrossRefGoogle Scholar
  13. 13.
    Schmidt H, Grurmann K, Nickson B, et al. TID test of an 8-Gbit NAND flash memory. IEEE Trans Nucl Sci, 2009, 56: 1937–1940CrossRefGoogle Scholar
  14. 14.
    Nguyen D N, Guertin S M, Swift G M, et al. Radiation effects on advanced flash memories. IEEE Trans Nucl Sci, 1999, 46: 1744–1750CrossRefGoogle Scholar
  15. 15.
    Clark L T, Holbert K E, Adams J W, et al. Evaluation of 1.5-T cell flash memory total ionizing dose response. IEEE Trans Nucl Sci, 2015, 62: 2431–2439CrossRefGoogle Scholar
  16. 16.
    Fazio A. Flash memory scaling. MRS Bull, 2004, 29: 814–817CrossRefGoogle Scholar
  17. 17.
    Banszerus L, Schmitz M, Engels S, et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci Adv, 2015, 1: 1500222CrossRefGoogle Scholar
  18. 18.
    Zhai P F, Liu J, Zeng J, et al. Evidence for re-crystallization process in the irradiated graphite with heavy ions obtained by Raman spectroscopy. Carbon, 2016, 101: 22–27CrossRefGoogle Scholar
  19. 19.
    Ribeiro-Palau R, Lafont F, Brun-Picard J, et al. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions. Nat Nanotech, 2015, 10: 965–971CrossRefGoogle Scholar
  20. 20.
    Chen J H, Jang C, Xiao S, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotech, 2008, 3: 206–209CrossRefGoogle Scholar
  21. 21.
    Son Y W, Cohen M L, Louie S G. Half-metallic graphene nanoribbons. Nature, 2006, 444: 347–349CrossRefGoogle Scholar
  22. 22.
    Peng J, Gao W, Gupta B K, et al. Graphene quantum dots derived from carbon fibers. Nano Lett, 2012, 12: 844–849CrossRefGoogle Scholar
  23. 23.
    Lee M W, Kim H Y, Yoon H, et al. Fabrication of dispersible graphene flakes using thermal plasma jet and their thin films for solar cells. Carbon, 2016, 106: 48–55CrossRefGoogle Scholar
  24. 24.
    Joo S S, Kim J, Kang S S, et al. Graphene-quantum-dot nonvolatile charge-trap flash memories. Nanotechnology, 2014, 25: 255203CrossRefGoogle Scholar
  25. 25.
    Wang S, Pu J, Chan D S H, et al. Wide memory window in graphene oxide charge storage nodes. Appl Phys Lett, 2010, 96: 143109CrossRefGoogle Scholar
  26. 26.
    Yang R, Zhu C X, Meng J L, et al. Isolated nanographene crystals for nano-floating gate in charge trapping memory. Sci Rep, 2013, 3: 2126CrossRefGoogle Scholar
  27. 27.
    Wang J C, Chang K P, Lin C T, et al. Integration of ammonia-plasma-functionalized graphene nanodiscs as charge trapping centers for nonvolatile memory applications. Carbon, 2017, 113: 318–324CrossRefGoogle Scholar
  28. 28.
    Specht M, Reisinger H, Hofmann F, et al. Charge trapping memory structures with Al2O3 trapping dielectric for high-temperature applications. Solid-State Electron, 2005, 49: 716–720CrossRefGoogle Scholar
  29. 29.
    Kaniyankandy S, Achary S N, Rawalekar S, et al. Ultrafast relaxation dynamics in graphene oxide: evidence of electron trapping. J Phys Chem C, 2011, 115: 19110–19116CrossRefGoogle Scholar
  30. 30.
    Oldham T R, McLean F B. Total ionizing dose effects in MOS oxides and devices. IEEE Trans Nucl Sci, 2003, 50: 483–499CrossRefGoogle Scholar
  31. 31.
    Hughes R C. Charge-carrier transport phenomena in amorphous SiO2: direct measurement of the drift mobility and lifetime. Phys Rev Lett, 1973, 30: 1333–1336CrossRefGoogle Scholar
  32. 32.
    Lenahan R M, Campbell J P, Kang A Y, et al. Radiation-induced leakage currents: atomic scale mechanisms. IEEE Trans Nucl Sci, 2001, 48: 2101–2106CrossRefGoogle Scholar
  33. 33.
    Ceschia M, Paccagnella A, Cester A, et al. Radiation induced leakage current and stress induced leakage current in ultra-thin gate oxides. IEEE Trans Nucl Sci, 1998, 45: 2375–2382CrossRefGoogle Scholar
  34. 34.
    Bi J S, Xi K, Li B, et al. Heavy ion induced upset errors in 90-nm 64 Mb NOR-type floating-gate flash memory. Chin Phys B, 2018, 27: 098501CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kai Xi
    • 1
  • Jinshun Bi
    • 1
    • 2
    Email author
  • Sandip Majumdar
    • 1
    • 3
  • Bo Li
    • 1
  • Jing Liu
    • 1
  • Yannan Xu
    • 1
    • 2
  • Ming Liu
    • 1
  1. 1.Laboratory of Microelectronics Devices and Integrated Technology, Institute of MicroelectronicsChinese Academy of SciencesBeijingChina
  2. 2.School of MicroelectronicsUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Science and TechnologyICFAI UniversityAgartala, TripuraIndia

Personalised recommendations