Advertisement

Simulation of a high-performance enhancement-mode HFET with back-to-back graded AlGaN layers

  • Fu Peng
  • Chao Yang
  • Siyu Deng
  • Dongya Ouyang
  • Bo Zhang
  • Jie WeiEmail author
  • Xiaorong Luo
Research Paper
  • 17 Downloads

Abstract

A novel three-dimensional hole gas (3DHG) enhancement-mode (E-mode) heterostructure fieldeffect transistor (HFET) is proposed and investigated. It features back-to-back graded AlGaN (BGA) barrier layers consisting of a positive-graded AlGaN layer and a negative-graded AlGaN layer, which form polarization gradient and subsequently induce the three-dimensional electron gas (3DEG) and 3DHG in the positiveand negative-graded AlGaN layers, respectively. The source and drain are located at the same side of the metal-insulator-semiconductor (MIS) trench gate, and the source is in contact with the HfO2 gate insulator. First, the on-state current is significantly improved owing to the high-density 3DEG in the positive-graded AlGaN. Next, the vertical conductive channel between the source and 3DEG is blocked by the 3DHG, thereby realizing the E-mode. The threshold voltage (Vth) can be modulated by a partial doping conductive channel. Subsequently, a high breakdown voltage (BV) is obtained, because the polarization junction formed by the polarization charges assists in depleting the drift region in the off-state. Next, the BGA-HFET is smaller than the conventional HFET (Con-HFET) owing to the special location of the source. The BV of the proposed HFET sharply increases to 919 V from 39 V of the Con-HFET with the same gate-drain spacing, and the saturation drain current is increased by 103.5%.

Keywords

graded AlGaN 3DHG-3DEG large on-state current high voltage enhancement mode 

Notes

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 51677021, 61234006), National Defense Science and Technology Project Foundation of China (Grant No. 1100395), and Fundamental Research Funds for the Central Universities (Grant No. ZYGX2014Z006).

References

  1. 1.
    Chow T P, Tyagi R. Wide bandgap compound semiconductors for superior high-voltage unipolar power devices. IEEE Trans Electron Dev, 1994, 41: 1481–1483CrossRefGoogle Scholar
  2. 2.
    Mishra U K, Parikh P, Wu Y-F. AlGaN/GaN HEMTs-an overview of device operation and applications. Proc IEEE, 2002, 90: 1022–1031CrossRefGoogle Scholar
  3. 3.
    Micovic M, Kurdoghlian A, Hashimoto P, et al. GaN HFET for W-band power applications. In: Proceedings of the International Electron Devices Meeting (IEDM), San Francisco, 2006. 425–427Google Scholar
  4. 4.
    Zhou Q, Chen W J, Liu S H, et al. Schottky-contact technology in InAlN/GaN HEMTs for breakdown voltage improvement. IEEE Trans Electron Dev, 2013, 60: 1075–1081CrossRefGoogle Scholar
  5. 5.
    Ambacher O, Smart J, Shealy J R, et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J Appl Phys, 1999, 85: 3222–3233CrossRefGoogle Scholar
  6. 6.
    Ohmaki Y, Tanimoto M, Akamatsu S, et al. Enhancement-mode AlGaN/AlN/GaN high electron mobility transistor with low on-state resistance and high breakdown voltage. Jpn J Appl Phys, 2006, 45: L1168–L1170CrossRefGoogle Scholar
  7. 7.
    Saito W, Takada Y, Kuraguchi M, et al. Recessed-gate structure approach toward normally off high-voltage Al- GaN/GaN HEMT for power electronics applications. IEEE Trans Electron Dev, 2006, 53: 356–362CrossRefGoogle Scholar
  8. 8.
    Uemoto Y, Hikita M, Ueno H, et al. A normally-off AlGaN/GaN transistor with RonA=2.6 m cm2 and BVds=640 V using conductivity modulation. In: Proceedings of the International Electron Devices Meeting (IEDM), San Francisco, 2006. 1–4Google Scholar
  9. 9.
    Cai Y, Zhou Y G, Chen K J, et al. High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment. IEEE Electron Dev Lett, 2005, 26: 435–437CrossRefGoogle Scholar
  10. 10.
    Xiong J Y, Yang C, Wei J, et al. Novel high voltage RESURF AlGaN/GaN HEMT with charged buffer layer. Sci China Inf Sci, 2016, 59: 042410CrossRefGoogle Scholar
  11. 11.
    Kim K W, Jung S D, Kim D S, et al. Effects of TMAH treatment on device performance of normally off Al2O3/GaN MOSFET. IEEE Electron Dev Lett, 2011, 32: 1376–1378CrossRefGoogle Scholar
  12. 12.
    Saito W, Omura I, Ogura T, et al. Theoretical limit estimation of lateral wide band-gap semiconductor power-switching device. Solid-State Electron, 2004, 48: 1555–1562CrossRefGoogle Scholar
  13. 13.
    Lee J G, Lee H J, Cha H Y, et al. Field plated AlGaN/GaN-on-Si HEMTs for high voltage switching applications. J Korean Phy Soc, 2011, 59: 2297–2300CrossRefGoogle Scholar
  14. 14.
    Karmalkar S, Deng J Y, Shur M S. RESURF AlGaN/GaN HEMT for high voltage power switching. IEEE Electron Dev Lett, 2001, 22: 373–375CrossRefGoogle Scholar
  15. 15.
    Nakajima A, Sumida Y, Dhyani M H, et al. GaN-based super heterojunction field effect transistors using the polarization junction concept. IEEE Electron Dev Lett, 2011, 32: 542–544CrossRefGoogle Scholar
  16. 16.
    Yang C, Xiong J Y, Wei J, et al. Analytical model and new structure of the enhancement-mode polarization-junction HEMT with vertical conduction channel. Superlattices Microstruct, 2016, 92: 92–99CrossRefGoogle Scholar
  17. 17.
    Jena D, Heikman S, Green D, et al. Realization of wide electron slabs by polarization bulk doping in graded III-V nitride semiconductor alloys. Appl Phys Lett, 2002, 81: 4395–4397CrossRefGoogle Scholar
  18. 18.
    Rajan S, Xing H, DenBaars S, et al. AlGaN/GaN polarization-doped field-effect transistor for microwave power applications. Appl Phys Lett, 2004, 84: 1591–1593CrossRefGoogle Scholar
  19. 19.
    Simon J, Wang A K, Xing H, et al. Carrier transport and confinement in polarization-induced three-dimensional electron slabs: importance of alloy scattering in AlGaN. Appl Phys Lett, 2006, 88: 042109CrossRefGoogle Scholar
  20. 20.
    Simon J, Protasenko V, Lian C X, et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science, 2010, 327: 60–64CrossRefGoogle Scholar
  21. 21.
    Li S B, Ware M, Wu J, et al. Polarization induced pn-junction without dopant in graded AlGaN coherently strained on GaN. Appl Phys Lett, 2012, 101: 122103CrossRefGoogle Scholar
  22. 22.
    Fang Y L, Feng Z H, Yin J Y, et al. AlGaN/GaN polarization-doped field-effect transistors with graded heterostructure. IEEE Trans Electron Dev, 2014, 61: 4084–4089CrossRefGoogle Scholar
  23. 23.
    Zhou X Y, Feng Z H, Fang Y L, et al. Simulation study of GaN-based HFETs with graded AlGaN barrier. Solid-State Electron, 2015, 109: 90–94CrossRefGoogle Scholar
  24. 24.
    Luo X R, Peng F, Yang C, et al. Polarization-doped enhancement mode HEMT. US Patent, US15/623371, 2017-6-14Google Scholar
  25. 25.
    Appels J A, Vaes H M J. High voltage thin layer device (RESURF devices). In: Proceedings of the International Electron Devices Meeting (IEDM), Washington, 1979. 238–241Google Scholar
  26. 26.
    Chen X B, Sin J K O. Optimization of the specific on-resistance of the COOLMOS. IEEE Trans Electron Dev, 2001, 48: 344–348Google Scholar
  27. 27.
    Zhang L, Ding K, Yan J C, et al. Three-dimensional hole gas induced by polarization in (0001)-oriented metal-face III-nitride structure. Appl Phys Lett, 2010, 97: 062103CrossRefGoogle Scholar
  28. 28.
    Li L, Yang L A, Cao R T, et al. Reduction of threading dislocations in N-polar GaN using a pseudomorphicaly grown graded-Al-fraction AlGaN interlayer. J Cryst Growth, 2013, 387: 1–5CrossRefGoogle Scholar
  29. 29.
    Uren M J, Nash K J, Balmer R S, et al. Punch-through in short-channel AlGaN/GaN HFETs. IEEE Trans Electron Dev, 2006, 53: 395–398CrossRefGoogle Scholar
  30. 30.
    Wei J, Jiang H P, Jiang QM, et al. Proposal of a GaN/SiC hybrid field-effect transistor for power switching applications. IEEE Trans Electron Dev, 2016, 63: 2469–2473CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fu Peng
    • 1
  • Chao Yang
    • 1
  • Siyu Deng
    • 1
  • Dongya Ouyang
    • 1
  • Bo Zhang
    • 1
  • Jie Wei
    • 1
    Email author
  • Xiaorong Luo
    • 1
  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations