Advertisement

Fabrication of InP-based monolithically integrated laser transmitters

  • Song Liang
  • Dan Lu
  • Lingjuan Zhao
  • Hongliang Zhu
  • Baojun Wang
  • Daibing Zhou
  • Wei Wang
Review

Abstract

InP-based photonic integrated circuits (PICs) have aroused great interest in recent years to meet the needs of future high-capacity and high-performance optical systems. With the advantages of small size, low power consumption, low cost, high reliability, InP-based PICs are promising solutions to replace the multiple discrete devices used in various systems. In this paper, we will review the design, fabrication, key integration technology and performance of several kinds of InP-based monolithically integrated transmitters developed in our group in recent years. Particular attention will be paid to the electro-absorption modulated laser (EML), multi-wavelength distributed feedback (DFB) laser arrays, widely tunable distributed reflector (DBR) lasers and their arrays, integrated amplified feedback lasers (AFL), and few-mode transmitters.

Keywords

photonic integration EMLs multi-wavelength DFB laser arrays widely tunable DBR lasers integrated AFL few-mode transmitters 

Notes

Acknowledgements

The work was supported by National Natural Science Foundation of China (NSFC) (Grant Nos. 61635010, 61474112, 61574137, 61320106013, 61335009, 61321063, 61674134, 61274071), National Key Research and Development Program of China (Grant No. 2016YFB0402301), National High Technology Research and Development Program of China (863 Program) (Grant No. 2013AA014502), and National Basic Research Program of China (973 Program) (Grant No. 2014CB340102).

References

  1. 1.
    Kilper D, Bergman K, Chan V W S, et al. Optical networks come of age. Opt Photonic News, 2014, 25: 50–57CrossRefGoogle Scholar
  2. 2.
    Nicholes S C, Masanovic M L, Jevremovic B, et al. An 8×8 InP monolithic tunable optical router (MOTOR) packet forwarding chip. J Lightwave Technol, 2010, 28: 641–650CrossRefGoogle Scholar
  3. 3.
    Corzine S W, Evans P, Fisher M, et al. Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems. IEEE Photonic Technol Lett, 2010, 22: 1015–1017CrossRefGoogle Scholar
  4. 4.
    Tolstikhin V I, Densmore A, Logvin Y, et al. 44-channel optical power monitor based on an Echelle grating demultiplexer and a waveguide photodetector array monolithically integrated on an InP substrate. In: Proceedings of Optical Fiber Communications Conference, Atlanta, 2003Google Scholar
  5. 5.
    Tahvili S, Latkowski S, Smalbrugge B, et al. InP-based integrated optical pulse shaper: demonstration of chirp compensation. IEEE Photonic Technol Lett, 2013, 25: 450–453CrossRefGoogle Scholar
  6. 6.
    Liang D, Fiorentino M, Srinivasan S, et al. Optimization of hybrid silicon microring lasers. IEEE Photonic J, 2011, 3: 580–587CrossRefGoogle Scholar
  7. 7.
    Kurczveil G, Heck M J, Peters J D, et al. An integrated hybrid silicon multiwavelength AWG laser. IEEE J Sel Top Quant Electron, 2011, 17: 1521–1527CrossRefGoogle Scholar
  8. 8.
    Srinivasan S, Tang Y, Read G, et al. Hybrid silicon devices for energy-efficient optical transmitters. IEEE Micro, 2013, 33: 22–31CrossRefGoogle Scholar
  9. 9.
    Arafin S, Coldren L A. Advanced InP photonic integrated circuits for communication and sensing. IEEE J Sel Top Quant Electron, 2018, 24: 6100612CrossRefGoogle Scholar
  10. 10.
    Kihara T, Nitta Y, Suda H, et al. Wavelength control of arrayed waveguide by MOVPE selective area growth. J Cryst Growth, 2000, 221: 196–200CrossRefGoogle Scholar
  11. 11.
    Sasaki T, Yamaguchi M, Kitamura M. Monolithically integrated multi-wavelength MQW-DBR laser diodes fabricated by selective metalorganic vapor phase epitaxy. J Cryst Growth, 1994, 145: 846–851CrossRefGoogle Scholar
  12. 12.
    Kobayashi W, Arai M, Yamanaka T, et al. Design and fabrication of 10-/40-Gb/s, uncooled electroabsorption modulator integrated DFB laser with butt-joint structure. J Lightwave Technol, 2010, 28: 164–171CrossRefGoogle Scholar
  13. 13.
    Cheng Y B, Pan J Q, Liang S, et al. Butt-coupled MOVPE growth for high-performance electro-absorption modulator integrated with a DFB laser. J Cryst Growth, 2007, 308: 297–301CrossRefGoogle Scholar
  14. 14.
    Cheng Y B, Pan J Q, Wang Y, et al. 40-Gb/s low chirp electroabsorption modulator integrated with DFB laser. IEEE Photonic Technol Lett, 2009, 21: 356–358CrossRefGoogle Scholar
  15. 15.
    Zhu H L, Liang S, Zhao L J, et al. A selective area growth double stack active layer electroabsorption modulator integrated with a distributed feedback laser. Chinese Sci Bull, 2009, 54: 3627–3632CrossRefGoogle Scholar
  16. 16.
    Deng Q F, Zhu H L, Xie X, et al. Low chirp EMLs fabricated by combining SAG and double stack active layer techniques. IEEE Photonic J, 2018, 10: 7902007Google Scholar
  17. 17.
    Zah C E, Amersfoort M R, Pathak B N, et al. Multiwavelength DFB laser arrays with integrated combiner and optical amplifier for WDM optical networks. IEEE J Sel Top Quant Electron, 1997, 3: 584–597CrossRefGoogle Scholar
  18. 18.
    Corzine S W, Evans P, Fisher M, et al. Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems. IEEE Photonic Technol Lett, 2010, 22: 1015–1017CrossRefGoogle Scholar
  19. 19.
    Li G P, Makino T, Sarangan A, et al. 16-wavelength gain-coupled DFB laser array with fine tunability. IEEE Photonic Technol Lett, 1996, 8: 22–24CrossRefGoogle Scholar
  20. 20.
    Young M G, Koren U, Miller B I, et al. A 16×1 wavelength division multiplexer with integrated distributed Bragg reflector lasers and electroabsorption modulators. IEEE Photonic Technol Lett, 1993, 5: 908–910CrossRefGoogle Scholar
  21. 21.
    Zhang C, Liang S, Zhu H L, et al. The fabrication of 10-channel DFB laser array by SAG technology. Opt Commun, 2013, 311: 6–10CrossRefGoogle Scholar
  22. 22.
    Zhang C, Liang S, Zhu H L, et al. Multi-channel DFB laser arrays fabricated by SAG technology. Opt Commun, 2013, 300: 230–235CrossRefGoogle Scholar
  23. 23.
    Zhang C, Liang S, Ma L, et al. Multi-channel DFB laser array fabricated by SAG with optimized epitaxy conditions. Chin Opt Lett, 2013, 11: 041401CrossRefGoogle Scholar
  24. 24.
    Zhang C, Zhu H L, Liang S, et al. Monolithically integrated 4-channel-selectable light sources fabricated by the SAG technology. IEEE Photonic J, 2013, 5: 1400407CrossRefGoogle Scholar
  25. 25.
    Zhang C, Zhu H L, Liang S, et al. Ten-channel InP-based large-scale photonic integrated transmitter fabricated by SAG technology. Opt Laser Technol, 2014, 64: 17–22CrossRefGoogle Scholar
  26. 26.
    Xu J, Liang S, Zhang Z, et al. EML array fabricated by SAG technique monolithically integrated with a buried ridge AWG multiplexer. Opt Laser Technol, 2017, 91: 46–50CrossRefGoogle Scholar
  27. 27.
    Zhang C, Liang S, Zhu H L, et al. A modified SAG technique for the fabrication of DWDM DFB laser arrays with highly uniform wavelength spacings. Opt Express, 2012, 20: 29620–29625CrossRefGoogle Scholar
  28. 28.
    Zhang C, Liang S, Zhu H L, et al. Multichannel DFB laser arrays fabricated by upper SCH layer SAG technique. IEEE J Quant Electron, 2014, 50: 92–97CrossRefGoogle Scholar
  29. 29.
    Xu J J, Liang S, Qiao L J, et al. Laser arrays with 25-GHz channel spacing fabricated by combining SAG and REC techniques. IEEE Photonic Technol Lett, 2016, 28: 2249–2252CrossRefGoogle Scholar
  30. 30.
    Shi Y C, Li SM, Li L Y, et al. Study of the multiwavelength DFB semiconductor laser array based on the reconstructionequivalent-chirp technique. J Lightwave Technol, 2013, 31: 3243–3250CrossRefGoogle Scholar
  31. 31.
    Tohmori Y, Jiang X, Arai S, et al. Novel structure GaInAsP/InP 1.5–1.6 μm bundle integrated-guide (BIG) distributed bragg reflector laser. Jpn J Appl Phys, 1985, 24: 399–401CrossRefGoogle Scholar
  32. 32.
    Han L S, Liang S, Wang H T, et al. Fabrication of low-cost multiwavelength laser arrays for OLTs in WDM-PONs by combining the SAG and BIG techniques. IEEE Photonic J, 2015, 7: 1–7Google Scholar
  33. 33.
    Park S J, Lee C H, Jeong K T, et al. Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network. J Lightwave Technol, 2004, 22: 2582–2591CrossRefGoogle Scholar
  34. 34.
    Banerjee A, Park Y, Clarke F, et al. Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review. J Opt Netw, 2005, 4: 737–758CrossRefGoogle Scholar
  35. 35.
    Ponzini F, Cavaliere F, Berrettini G, et al. Evolution scenario toward WDM-PON. J Opt Commun Netw, 2009, 1: 25–34CrossRefGoogle Scholar
  36. 36.
    Raring J W, Johansson L A, Skogen E J, et al. 40-Gb/s widely tunable low-drive-voltage electroabsorption-modulated transmitters. J Lightwave Technol, 2007, 25: 239–248CrossRefGoogle Scholar
  37. 37.
    Johnson J E, Ketelsen L J P, Geary J M, et al. 10 Gb/s transmission using an electroabsorption-modulated distributed Bragg reflector laser with integrated semiconductor optical amplifier. In: Proceedings of Optical Fiber Communication Conference and Exhibit, Anaheim, 2013Google Scholar
  38. 38.
    Kim S B, Sim J S, Kim K S, et al. Selective-area MOVPE growth for 10 Gbit/s electroabsorption modulator integrated with a tunable DBR laser. J Cryst Growth, 2007, 298: 672–675CrossRefGoogle Scholar
  39. 39.
    Weber J P. Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable Bragg filters. IEEE J Quant Electron, 1994, 30: 1801–1816CrossRefGoogle Scholar
  40. 40.
    Han L S, Liang S, Zhang C, et al. Fabrication of widely tunable ridge waveguide DBR lasers for WDM-PON. Chinese Opt Lett, 2014, 12: 091402CrossRefGoogle Scholar
  41. 41.
    Yu L Q, Wang H T, Lu D, et al. A widely tunable directly modulated DBR laser with high linearity. IEEE Photonic J, 2014, 6: 1501308Google Scholar
  42. 42.
    Zhang C, Liang S, Zhu H L, et al. Widely tunable dual-mode distributed feedback laser fabricated by selective area growth technology integrated with Ti heaters. Opt Lett, 2013, 38: 3050–3053CrossRefGoogle Scholar
  43. 43.
    Zhang C, Liang S, Zhu H L, et al. Tunable DFB lasers integrated with Ti thin film heaters fabricated with a simple procedure. Opt Laser Technol, 2013, 54: 148–150CrossRefGoogle Scholar
  44. 44.
    Han L H, Liang S, Xu J J, et al. DBR laser with over 20 nm wavelength tuning range. IEEE Photonic Technol Lett, 2016, 28: 943–946Google Scholar
  45. 45.
    Zhou D B, Liang S, Zhao L J, et al. High-speed directly modulated widely tunable two-section InGaAlAs DBR lasers. Opt Express, 2017, 25: 2341–2346CrossRefGoogle Scholar
  46. 46.
    Han L H, Liang S, Wang H T, et al. Electroabsorption-modulated widely tunable DBR laser transmitter for WDMPONs. Opt Express, 2014, 22: 30368–30376CrossRefGoogle Scholar
  47. 47.
    Hara K, Nakamura H, Kimura S, et al. Flexible load balancing technique using dynamic wavelength bandwidth allocation (DWBA) toward 100 Gbit/s-class-WDM/TDM-PON. In: Proceedings of the 36th European Conference and Exhibition on Optical Communication, Torino, 2010Google Scholar
  48. 48.
    Xu J J, Han L S, Hou L P, et al. EAM modulated DBR laser array for TWDM-PON applications. In: Proceedings of IEEE Photonics Conference (IPC), Waikoloa, 2016CrossRefGoogle Scholar
  49. 49.
    Yu L Q, Lu D, Pan B W, et al. Monolithically integrated amplified feedback lasers for high-quality microwave and broadband chaos generation. J Lightwave Technol, 2014, 32: 3595–3601CrossRefGoogle Scholar
  50. 50.
    Lang R, Kobayashi K. External optical feedback effects on semiconductor injection laser properties. IEEE J Quant Electron, 1980, 16: 347–355CrossRefGoogle Scholar
  51. 51.
    Pan B W, Lu D, Zhang L M, et al. Widely tunable amplified feedback laser with beating-frequency covering 60-GHz band. IEEE Photonic Technol Lett, 2015, 27: 2103–2106CrossRefGoogle Scholar
  52. 52.
    Pan B W, Yu L Q, Lu D, et al. Simulation and experimental characterization of a dual-mode two-section amplified feedback laser with mode separation over 100 GHz. Chinese Opt Lett, 2014, 12: 110605–110609CrossRefGoogle Scholar
  53. 53.
    Pan B W, Guo L, Zhang L M, et al. Widely tunable monolithic dual-mode laser for W-band photonic millimeter-wave generation and all-optical clock recovery. Appl Opt, 2016, 55: 2930–2935CrossRefGoogle Scholar
  54. 54.
    Sun Y, Pan J Q, Zhao L J, et al. All-optical clock recovery for 20 Gb/s using an amplified feedback DFB laser. J Lightwave Technol, 2010, 28: 2521–2525CrossRefGoogle Scholar
  55. 55.
    Wang L, Zhao X F, Lou C Y, et al. 40 Gbits/s all-optical clock recovery for degraded signals using an amplified feedback laser. Appl Opt, 2010, 49: 6577–6581CrossRefGoogle Scholar
  56. 56.
    Qiu J F, Chen C, Zhao L J, et al. Detailed analysis of a 40 GHz all-optical synchronization based on an amplifiedfeedback distributed feedback laser. Appl Opt, 2012, 51: 2894–2901CrossRefGoogle Scholar
  57. 57.
    Pan B W, Yu L Q, Guo L, et al. 100 Gb/s all-optical clock recovery based on a monolithic dual-mode DBR laser. Chin Opt Lett, 2016, 14: 030604–030607CrossRefGoogle Scholar
  58. 58.
    Pan B W, Lu D, Sun Y, et al. Tunable optical microwave generation using self-injection locked monolithic dualwavelength amplified feedback laser. Opt Lett, 2014, 39: 6395–6398CrossRefGoogle Scholar
  59. 59.
    Lu D, Pan B W, Chen H B, et al. Frequency-tunable optoelectronic oscillator using a dual-mode amplified feedback laser as an electrically controlled active microwave photonic filter. Opt Lett, 2015, 40: 4340–4343CrossRefGoogle Scholar
  60. 60.
    Pan B W, Lu D, Zhang L M, et al. A widely tunable optoelectronic oscillator based on directly modulated dual-mode laser. IEEE Photonic J, 2015, 7: 1–7Google Scholar
  61. 61.
    Guo L, Zhang R K, Lu D, et al. Linearly chirped microwave generation using a monolithic integrated amplified feedback laser. IEEE Photonic Technol Lett, 2017, 29: 1915–1918CrossRefGoogle Scholar
  62. 62.
    Wu J G, Zhao L J, Wu Z M, et al. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip. Opt Express, 2013, 21: 23358–23364CrossRefGoogle Scholar
  63. 63.
    Pan B W, Lu D, Zhao L J. Broadband chaos generation using monolithic dual-mode laser with optical feedback. IEEE Photonic Technol Lett, 2015, 27: 2516–2519CrossRefGoogle Scholar
  64. 64.
    Zhang L M, Pan B W, Chen G C, et al. Long-range and high-resolution correlation optical time-domain reflectometry using a monolithic integrated broadband chaotic laser. Appl Opt, 2017, 56: 1253–1256CrossRefGoogle Scholar
  65. 65.
    Zhang L M, Pan B W, Chen G C, et al. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser. Sci Rep, 2017, 8: 45900CrossRefGoogle Scholar
  66. 66.
    Li Z S, Lu D, He Y M, et al. InP-based directly modulated monolithic integrated few-mode transmitter. Photonic Res, 2018, 6: 463–467CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Song Liang
    • 1
    • 2
    • 3
  • Dan Lu
    • 1
    • 2
    • 3
  • Lingjuan Zhao
    • 1
    • 2
    • 3
  • Hongliang Zhu
    • 1
    • 2
    • 3
  • Baojun Wang
    • 1
    • 2
    • 3
  • Daibing Zhou
    • 1
    • 2
    • 3
  • Wei Wang
    • 1
    • 2
    • 3
  1. 1.Key Laboratory of Semiconductor Materials Science, Institute of SemiconductorsChinese Academy of SciencesBeijingChina
  2. 2.College of Materials Science and Opto-Electronic TechnologyUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of SemiconductorsChinese Academy of SciencesBeijingChina

Personalised recommendations