Advertisement

A new method for extending rate equation based VCSEL model with multimode spectral characteristic

  • Anzhong Liang
  • Chuanchuan YangEmail author
  • Cheng Zhang
  • Jingjing Song
  • Hongbin Li
Research Paper
  • 78 Downloads

Abstract

An accurate VCSEL model is important to evaluate the performance of VCSEL-based high speed short range optical interconnect system. Current VCSEL models show no evidence of the multimode spectral characteristic, which leads to an inaccurate performance estimation of VCSEL-based high speed optical interconnect system especially with large chromatic dispersion. To overcome this problem, we propose a new method to introduce multimode spectral characteristic into current VCSEL models, which extends the spatiotemporal multimode rate equations by calculating the wavelength shift of the VCSEL transverse modes. A VCSEL-multimode fiber (MMF) based short range optical interconnect simulation system is then built using our modified VCSEL model by VPItransmissionMaker. The symbol broadening and the BER performance of 15 Gb/s NRZ signal are tested in both left-tilted differential mode delay (DMD) profile MMF (L-MMF) and right-tilted DMD profile MMF (R-MMF). Simulation results validate our proposed method and indicate that the spectral characteristic is a key component for VCSEL models.

Keywords

short-range optical interconnect vertical cavity surface emitting lasers VCSEL multimode rate equations multimode spectral characteristic multimode fiber 

References

  1. 1.
    Ji Y F, Wang X X, Zhang S Z, et al. Dual-layer efficiency enhancement for future passive optical network. Sci China Inf Sci, 2016, 59: 022313Google Scholar
  2. 2.
    Tatum J A, Gazula D, Graham L A, et al. VCSEL-based interconnects for current and future data centers. J Lightwave Technol, 2015, 33: 727–732CrossRefGoogle Scholar
  3. 3.
    Debernardi P, Kroner A, Rinaldi F, et al. Surface relief versus standard VCSELs: a comparison between experimental and hot-cavity model results. IEEE J Sel Top Quant Electron, 2009, 15: 828–837CrossRefGoogle Scholar
  4. 4.
    Jungo M X, Erni D, Bachtold W. VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model. IEEE J Sel Top Quant Electron, 2003, 9: 939–948CrossRefGoogle Scholar
  5. 5.
    Perchoux J, Rissons A, Mollier J C. Multimode VCSEL model for wide frequency-range RIN simulation. Opt Commun, 2008, 281: 162–169CrossRefGoogle Scholar
  6. 6.
    Lenstra D, Yousefi M. Rate-equation model for multi-mode semiconductor lasers with spatial hole burning. Opt Express, 2014, 22: 8143–8149CrossRefGoogle Scholar
  7. 7.
    Hamad W, Wanckel S, Hofmann W H E. Small-signal analysis of ultra-high-speed multi-mode VCSELs. IEEE J Quant Electron, 2016, 52: 1–11CrossRefGoogle Scholar
  8. 8.
    Wang B H, Sorin W V, Palermo S, et al. Comprehensive vertical-cavity surface-emitting laser model for optical interconnect transceiver circuit design. Opt Eng, 2016, 55: 126103CrossRefGoogle Scholar
  9. 9.
    Belfiore G, Khafaji M, Henker R, et al. A compact electro-optical VCSEL model for high-speed IC design. In: Proceedings of the 12th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Lisbon, 2016Google Scholar
  10. 10.
    Entezam S, Zarifkar A, Sheikhi M H. Thermal equivalent circuit model for coupled-cavity surface-emitting lasers. IEEE J Quant Electron, 2015, 51: 1–8CrossRefGoogle Scholar
  11. 11.
    Gholami A, Toffano Z, Destrez A, et al. Optimization of VCSEL spatiotemporal operation in MMF links for 10-Gb ethernet. IEEE J Sel Top Quant Electron, 2006, 12: 767–775CrossRefGoogle Scholar
  12. 12.
    Castro J M, Pimpinella R, Kose B, et al. Investigation of the interaction of modal and chromatic dispersion in VCSEL-MMF channels. J Lightwave Technol, 2012, 30: 2532–2541CrossRefGoogle Scholar
  13. 13.
    Molin D, Astruc M, Sillard P. Chromatic dispersion compensated multimode fibers for data communications. In: Proceedings of the 37th European Conference on Optical Communication (ECOC), Geneva, 2011Google Scholar
  14. 14.
    Bottacchi S. Multi-gigabit Transmission over Multimode Optical Fiber: Theory and Design Methods for 10 GbE Systems. 7nd ed. New York: John Wiley Sons, 2006CrossRefGoogle Scholar
  15. 15.
    Hadley G R. Effective index model for vertical-cavity surface-emitting lasers. Opt Lett, 1995, 20: 1483–1485CrossRefGoogle Scholar
  16. 16.
    VISTAS: VCSEL integrated spatio-temporal advanced simulator. Version 1.11. Sourceforge. 2003Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anzhong Liang
    • 1
  • Chuanchuan Yang
    • 1
    Email author
  • Cheng Zhang
    • 1
  • Jingjing Song
    • 1
  • Hongbin Li
    • 1
  1. 1.State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer SciencePeking UniversityBeijingChina

Personalised recommendations