Science China Information Sciences

, 61:099101 | Cite as

Small sample learning with high order contractive auto-encoders and application in SAR images

  • Qianwen Yang
  • Fuchun SunEmail author

Supplementary material

11432_2017_9214_MOESM1_ESM.pdf (3.7 mb)
Small sample learning with high order contractive auto-encoders and application in SAR images


  1. 1.
    Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell, 2013, 35: 1798–1828CrossRefGoogle Scholar
  2. 2.
    Alain G, Bengio Y. What regularized auto-encoders learn from the data-generating distribution. J Mach Learn Res, 2014, 15: 3563–3593MathSciNetzbMATHGoogle Scholar
  3. 3.
    Rifai S, Vincent P, Muller X, et al. Contractive autoencoders: explicit invariance during feature extraction. In: Proceedings of International Conference on Machine Learning (ICML), Bellevue, 2011Google Scholar
  4. 4.
    Evgeniou T, Poggio T, Pontil M, et al. Regularization and statistical learning theory for data analysis. Comput Stat Data Anal, 2002, 38: 421–432MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Liu H, Yu Y, Sun F, et al. Visual-tactile fusion for object recognition. IEEE Trans Automat Sci Eng, 2017, 14: 996–1008CrossRefGoogle Scholar
  6. 6.
    Liu H, Liu Y, Sun F. Robust exemplar extraction using structured sparse coding. IEEE Trans Neural Netw Learn Syst, 2015, 26: 1816–1821MathSciNetCrossRefGoogle Scholar
  7. 7.
    Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning (ICML), Helsinki, 2008. 1096–1103CrossRefGoogle Scholar
  8. 8.
    Kamyshanska H, Memisevic R. The potential energy of an autoencoder. IEEE Trans Pattern Anal Mach Intell, 2015, 37: 1261–1273CrossRefGoogle Scholar
  9. 9.
    Rifai S, Mesnil G, Vincent P, et al. Higher order contractive auto-encoder. In: Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD), Athens, 2011. 645–660CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and TechnologyTsinghua UniversityBeijingChina
  2. 2.State Key Lab of Intelligent Technology and SystemsTsinghua UniversityBeijingChina
  3. 3.Tsinghua National Laboratory for Information Science and TechnologyTsinghua UniversityBeijingChina

Personalised recommendations