Improving BDD-based attractor detection for synchronous Boolean networks

Research Paper

Abstract

Boolean networks are an important formalism for modelling biological systems and have attracted much attention in recent years. An important challenge in Boolean networks is to exhaustively find attractors, which represent steady states of a biological network. In this paper, we propose a new approach to improve the efficiency of BDD-based attractor detection. Our approach includes a monolithic algorithm for small networks, an enumerative strategy to deal with large networks, a method to accelerate attractor detection based on an analysis of the network structure, and two heuristics on ordering BDD variables. We demonstrate the performance of our approach on a number of examples and on a realistic model of apoptosis in hepatocytes. We compare it with one existing technique in the literature.

Keywords

Boolean networks systems biology binary decision diagram attractor verification algorithms 

References

  1. 1.
    Kauffman S. Homeostasis and differentiation in random genetic control networks. Nature, 1969, 224: 177–178CrossRefGoogle Scholar
  2. 2.
    Huang S. Genomics, complexity and drug discovery: insights from Boolean network models of cellular regulation. Pharmacogenomics, 2001, 2: 203–222CrossRefGoogle Scholar
  3. 3.
    Needham C J, Manfield I W, Bulpitt A J, et al. From gene expression to gene regulatory networks in Arabidopsis thaliana. BMC Syst Biol, 2009, 3: 85CrossRefGoogle Scholar
  4. 4.
    Garg A, Xenarios L, Mendoza L, et al. An efficient method for dynamic analysis of gene regulatory networks and in silico gene perturbation experiments. In: Proceedings of 11th Annual Conference on Research in Computational Molecular Biology. Berlin: Springer, 2007. 62–76CrossRefGoogle Scholar
  5. 5.
    Somogyi R, Greller L D. The dynamics of molecular networks: applications to therapeutic discovery. Drug Discov Today, 2001, 6: 1267–1277CrossRefGoogle Scholar
  6. 6.
    Raeymaekers L. Dynamics of Boolean networks controlled by biologically meaningful functions. J Theor Biol, 2002, 218: 331–341MathSciNetCrossRefGoogle Scholar
  7. 7.
    Irons D J. Improving the efficiency of attractor cycle identification in Boolean networks. Phys D, 2006, 217: 7–21MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dubrova E, Teslenko M, Martinelli A. Kauffman networks: analysis and applications. In: Proceedings of 2005 IEEE/ACM International Conference on Computer-Aided Design. Washington DC: IEEE, 2005. 479–484Google Scholar
  9. 9.
    Garg A, Di Cara A, Xenarios L, et al. Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics, 2008, 24: 1917–1925CrossRefGoogle Scholar
  10. 10.
    Zheng D S, Yang G W, Li X Y, et al. An efficient algorithm for computing attractors of synchronous and asynchronous Boolean networks. PLoS ONE, 2013, 8: e60593CrossRefGoogle Scholar
  11. 11.
    Dubrova E, Teslenko M. A SAT-based algorithm for finding attractors in synchronous Boolean networks. IEEE/ACM Trans Comput Biol Bioinf, 2011, 8: 1393–1399CrossRefGoogle Scholar
  12. 12.
    Zhao Y, Kim J, Filippone M. Aggregation algorithm towards large-scale Boolean network analysis. IEEE Trans Automat Contr, 2013, 58: 1976–1985MathSciNetCrossRefGoogle Scholar
  13. 13.
    Guo W S, Yang G W, Wu W, et al. A parallel attractor finding algorithm based on Boolean satisfiability for genetic regulatory networks. PLoS ONE, 2014, 9: e94258CrossRefGoogle Scholar
  14. 14.
    Kauffman S. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 1969, 22: 437–467MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mushthofa M, Torres G, Van de Peer Y, et al. ASP-G: an ASP-based method for finding attractors in genetic regulatory networks. Bioinformatics, 2014, 30: 3086–3092CrossRefGoogle Scholar
  16. 16.
    Shmulevich I, Edward R D. Probabilistic Boolean Networks: the Modeling and Control of Gene Regulatory Networks. Philadelphia: SIAM Press, 2010CrossRefMATHGoogle Scholar
  17. 17.
    Lee C. Representation of switching circuits by binary-decision programs. Bell Syst Tech J, 1959, 38: 985–999MathSciNetCrossRefGoogle Scholar
  18. 18.
    Akers S B. Binary decision diagrams. IEEE Trans Comput, 1978, 100: 509–516CrossRefMATHGoogle Scholar
  19. 19.
    Bollig B, Wegener L. Improving the variable ordering of OBDDs is NP-complete. IEEE Trans Comput, 1996, 45: 993–1002CrossRefMATHGoogle Scholar
  20. 20.
    Bryant R E. Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Comput Surv, 1992, 24: 293–318CrossRefGoogle Scholar
  21. 21.
    Drechsler R. Verification of multi-valued logic networks. In: Proceedings of 26th Symposium on Multiple-Valued Logic. Washington DC: IEEE, 1996. 10–15CrossRefGoogle Scholar
  22. 22.
    Malik S, Wang A R, Brayton R K, et al. Logic verification using binary decision diagrams in a logic synthesis environment. In: Proceedings of IEEE International Conference on Computer-Aided Design. Washington DC: IEEE, 1988. 6–9Google Scholar
  23. 23.
    Lomuscio A, Qu H Y, Raimondi F. MCMAS: an open-source model checker for the verification of multi-agent systems. Int J Softw Tools Technol Transf, 2015, doi: 10.1007/s10009-015-0378-xGoogle Scholar
  24. 24.
    Mizera A, Pang J, Yuan Q X. ASSA-PBN: an approximate steady-state analyser of probabilistic Boolean networks. In: Proceedings of 13th International Symposium on Automated Technology for Verification and Analysis. Berlin: Springer, 2015. 214–220. Software available at http://satoss.uni.lu/software/ASSA-PBN/CrossRefGoogle Scholar
  25. 25.
    Schlatter R, Schmich K, Vizcarra I A, et al. ON/OFF and beyond—a Boolean model of apoptosis. PLoS Comput Biol, 2009, 5: e1000595CrossRefGoogle Scholar
  26. 26.
    Trairatphisan P, Mizera A, Pang J, et al. optPBN: an optimisation toolbox for probabilistic Boolean networks. PLoS ONE, 2014, 9: e98001CrossRefGoogle Scholar
  27. 27.
    Mizera A, Pang J, Yuan Q X. Reviving the two-state Markov chain approach. Technical Report. 2015. Available online at http://arxiv.org/abs/1501.01779Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Qixia Yuan
    • 1
  • Hongyang Qu
    • 2
  • Jun Pang
    • 1
    • 3
  • Andrzej Mizera
    • 1
  1. 1.Faculty of Science, Technology and CommunicationUniversity of LuxembourgLuxembourgLuxembourg
  2. 2.Department of Automatic Control & Systems EngineeringUniversity of SheffieldSheffieldUK
  3. 3.Interdisciplinary Centre for Security, Reliability and TrustUniversity of LuxembourgLuxembourgLuxembourg

Personalised recommendations