Advertisement

The Sunway TaihuLight supercomputer: system and applications

  • Haohuan Fu
  • Junfeng Liao
  • Jinzhe Yang
  • Lanning Wang
  • Zhenya Song
  • Xiaomeng Huang
  • Chao Yang
  • Wei Xue
  • Fangfang Liu
  • Fangli Qiao
  • Wei Zhao
  • Xunqiang Yin
  • Chaofeng Hou
  • Chenglong Zhang
  • Wei Ge
  • Jian Zhang
  • Yangang Wang
  • Chunbo Zhou
  • Guangwen Yang
Research Paper

Abstract

The Sunway TaihuLight supercomputer is the world’s first system with a peak performance greater than 100 PFlops. In this paper, we provide a detailed introduction to the TaihuLight system. In contrast with other existing heterogeneous supercomputers, which include both CPU processors and PCIe-connected many-core accelerators (NVIDIA GPU or Intel Xeon Phi), the computing power of TaihuLight is provided by a homegrown many-core SW26010 CPU that includes both the management processing elements (MPEs) and computing processing elements (CPEs) in one chip. With 260 processing elements in one CPU, a single SW26010 provides a peak performance of over three TFlops. To alleviate the memory bandwidth bottleneck in most applications, each CPE comes with a scratch pad memory, which serves as a user-controlled cache. To support the parallelization of programs on the new many-core architecture, in addition to the basic C/C++ and Fortran compilers, the system provides a customized Sunway OpenACC tool that supports the OpenACC 2.0 syntax. This paper also reports our preliminary efforts on developing and optimizing applications on the TaihuLight system, focusing on key application domains, such as earth system modeling, ocean surface wave modeling, atomistic simulation, and phase-field simulation.

Keywords

supercomputer many-core high performance computing scientific computing computer architecture 

References

  1. 1.
    Hey A J, Tansley S, Tolle K M, et al. The Fourth Paradigm: Data-Intensive Scientific Discovery. Vol. 1. Redmond: Microsoft Research, 2009Google Scholar
  2. 2.
    Shingu S, Takahara H, Fuchigami H, et al. A 26.58 TFlops global atmospheric simulation with the spectral transform method on the Earth Simulator. In: Proceedings of the ACM/IEEE Conference on Supercomputing. Los Alamitos: IEEE, 2002. 1–19Google Scholar
  3. 3.
    Rudi J, Malossi A C I, Isaac T, et al. An extreme-scale implicit solver for complex PDEs: highly heterogeneous flow in earth’s mantle. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. New York: ACM, 2015. 5Google Scholar
  4. 4.
    Ishiyama T, Nitadori K, Makino J. 4.45 PFlops astrophysical N-body simulation on K computer: the gravitational trillion-body problem. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. Los Alamitos: IEEE, 2012. 5Google Scholar
  5. 5.
    Habib S, Morozov V A, Finkel H, et al. The universe at extreme scale: multi-petaflop sky simulation on the BG/Q. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. Los Alamitos: IEEE, 2012. 4Google Scholar
  6. 6.
    Shimokawabe T, Aoki T, Takaki T, et al. Peta-scale phase-field simulation for dendritic solidification on the TSUBAME 2.0 supercomputer. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. New York: ACM, 2011. 3Google Scholar
  7. 7.
    Adiga N R, Almasi G, Aridor Y, et al. An overview of the BlueGene/L supercomputer. In: Proceedings of the 2002 ACM/IEEE Conference on Supercomputing. Los Alamitos: IEEE, 2002. 1–22Google Scholar
  8. 8.
    Liao X K, Xiao L Q, Yang C Q, et al. MilkyWay-2 supercomputer: system and application. Front Comput Sci, 2014, 8: 345–356MathSciNetCrossRefGoogle Scholar
  9. 9.
    Yang X J, Liao X K, Lu K, et al. The TianHe-1A supercomputer: its hardware and software. J Comput Sci Technol, 2011, 26: 344–351CrossRefGoogle Scholar
  10. 10.
    Zheng F, Li H L, Lv H, et al. Cooperative computing techniques for a deeply fused and heterogeneous many-core processor architecture. J Comput Sci Technol, 2015, 30: 145–162CrossRefGoogle Scholar
  11. 11.
    Drake J, Foster I, Michalakes J, et al. Design and performance of a scalable parallel community climate model. Parallel Comput, 1995, 21: 1571–1591CrossRefzbMATHGoogle Scholar
  12. 12.
    Dennis J M, Vertenstein M, Worley P H, et al. Computational performance of ultra-high-resolution capability in the Community Earth System Model. Int J High Perform Comput Appl, 2012, 26: 5–16CrossRefGoogle Scholar
  13. 13.
    Neale R B, Chen C-C, Gettelman A, et al. Description of the NCAR Community Atmosphere Model (CAM 5.0). The National Center for Atmospheric Research, Boulder. Note NCAR/TN-4861STRGoogle Scholar
  14. 14.
    Dennis J M, Edwards J, Evans K J, et al. CAM-SE: a scalable spectral element dynamical core for the Community Atmosphere Model. Int J High Perform Comput Appl, 2012, 26: 74–89CrossRefGoogle Scholar
  15. 15.
    Lauritzen P H, Jablonowski C, Taylor M A. Numerical Techniques for Global Atmospheric Models. Berlin: Springer, 2011CrossRefzbMATHGoogle Scholar
  16. 16.
    Ogura Y, Phillips N A. Scale analysis of deep and shallow convection in the atmosphere. J Atmos Sci, 1962, 19: 173–179CrossRefGoogle Scholar
  17. 17.
    Ullrich P, Jablonowski C. Operator-split Runge-Kutta-Rosenbrock methods for nonhydrostatic atmospheric models. Mon Weather Rev, 2012, 140: 1257–1284CrossRefGoogle Scholar
  18. 18.
    Zeng Y Y, Li Q F, Wei Z, et al. MASNUM ocean wave numerical model in spherical coordinates and its application. Acta Oceanol Sin, 2005, 27: 1–7Google Scholar
  19. 19.
    Hou C F, Xu J, Wang P, et al. Efficient GPU-accelerated molecular dynamics simulation of solid covalent crystals. Comput Phys Commun, 2013, 184: 1364–1371CrossRefGoogle Scholar
  20. 20.
    Hou C F, Xu J, Wang P, et al. Petascale molecular dynamics simulation of crystalline silicon on Tianhe-1A. Int J High Perform Comput Appl, 2013, 27: 307–317CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Haohuan Fu
    • 1
    • 3
  • Junfeng Liao
    • 1
    • 2
    • 3
  • Jinzhe Yang
    • 2
  • Lanning Wang
    • 4
  • Zhenya Song
    • 6
  • Xiaomeng Huang
    • 1
    • 3
  • Chao Yang
    • 5
  • Wei Xue
    • 1
    • 2
    • 3
  • Fangfang Liu
    • 5
  • Fangli Qiao
    • 6
  • Wei Zhao
    • 6
  • Xunqiang Yin
    • 6
  • Chaofeng Hou
    • 7
  • Chenglong Zhang
    • 7
  • Wei Ge
    • 7
  • Jian Zhang
    • 8
  • Yangang Wang
    • 8
  • Chunbo Zhou
    • 8
  • Guangwen Yang
    • 1
    • 2
    • 3
  1. 1.Ministry of Education Key Laboratory for Earth System Modeling, and Center for Earth System ScienceTsinghua UniversityBeijingChina
  2. 2.Department of Computer Science and TechnologyTsinghua UniversityBeijingChina
  3. 3.National Supercomputing Center in WuxiWuxiChina
  4. 4.College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina
  5. 5.Institute of SoftwareChinese Academy of SciencesBeijingChina
  6. 6.First Institute of OceanographyState Oceanic AdministrationQingdaoChina
  7. 7.Institute of Process EngineeringChinese Academy of SciencesBeijingChina
  8. 8.Computer Network Information CenterChinese Academy of SciencesBeijingChina

Personalised recommendations