Advertisement

Novel cover selection criterion for spatial steganography using linear pixel prediction error

  • Wei HuangEmail author
  • Xianfeng Zhao
Letter
  • 95 Downloads

利用线性像素预测误差的空域隐写载体选择指标

摘要

创新点

本文提出了一种利用线性像素预测误差的空域隐写载体选择指标, 与现有方法相比, 与隐写分析正确率相关系数更高。 主要创新点在于:

  1. 1.

    利用线性模型对图像建模, 参数更灵活, 其预测误差 LPE 比现有方法更有效地指示该类图像隐写分析的正确率。

     
  2. 2.

    利用最小二乘估计参数, 消除了图像间纹理模式的差异, 能有效用于传统的与高隐蔽性的空域隐写, 适应性好。

     
  3. 3.

    该指标的计算是开环的, 耗时少, 不至于对隐写造成计算负担, 可以用在智能设备上。

     

关键词

隐写 载体选择 线性预测误差 空域隐写 信息隐藏 

Supplementary material

11432_2016_5530_MOESM1_ESM.pdf (116 kb)
Supplementary material, approximately 115 KB.

References

  1. 1.
    Böhme R. Principles of modern steganography and steganalysis. In: Advanced Statistical Steganalysis. Berlin: Springer, 2010. 11–77CrossRefGoogle Scholar
  2. 2.
    Kouider S, Chaumont M, Puech W. Technical points about adaptive steganography by oracle (ASO). In: Proceedings of IEEE 20th European Signal Processing Conference (EUSIPCO), Bucharest, 2012. 1703–1707Google Scholar
  3. 3.
    Ker AD, Bas P, Böhme R, et al. Moving steganography and steganalysis from the laboratory into the real world. In: Proceedings of 1st ACM Workshop on Information Hiding and Multimedia Security, New York, 2013. 45–58CrossRefGoogle Scholar
  4. 4.
    Holub V, Fridrich J. Designing steganographic distortion using directional filters. In: IEEE International Workshop on Information Forensics and Security, Tenerife, 2012. 234–239Google Scholar
  5. 5.
    Holub V, Fridrich J, Denemark T. Universal distortion function for steganography in an arbitrary domain. EURASIP J Inf Secur, 2014; 1: 1–13CrossRefGoogle Scholar
  6. 6.
    Bas P, Filler T, Pevný T. Break our steganographic system: the ins and outs of organizing BOSS. In: Proceedings of 13th International Conference on Information Hiding, Prague, 2011. 59–70Google Scholar
  7. 7.
    Yan X, Su X G. Linear Regression Analysis: Theory and Computing. Singapore: World Scientific, 2009CrossRefzbMATHGoogle Scholar
  8. 8.
    Kodovsky J, Fridrich J, Holub V. Ensemble classifiers for steganalysis of digital media. IEEE Trans Inf Foren Secur, 2012; 7: 432–444CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Software SchoolXiamen UniversityXiamenChina
  2. 2.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations