Advertisement

Lightpath blocking analysis for optical networks with ROADM intra-node add-drop contention

  • Yongcheng Li
  • Li Gao
  • Sanjay K. Bose
  • Weidong Shao
  • Xiaoling Wang
  • Gangxiang ShenEmail author
Research Paper Special Focus on All Optical Networks

Abstract

The contention factor limits the extent to which lightpaths using the same wavelength can be added/dropped in a Reconfigurable Optical Add/Drop Multiplexer (ROADM) when it is operated in a colorless and directionless fashion. This paper presents an analysis to estimate the probability of blocked lightpath requests when a node of this type is used and validates the results for three traffic models. Simulations confirm the validity of the analytical results for lightpath blocking both for various values of the add/drop contention factor C and for changing load distribution in the network. We observe a saturation trend in the lightpath blocking performance as the add/drop port count per bank increases and that a high enough value of C reduces lightpath blocking to levels obtainable from an ideal, comntentionless ROADM. When C is small, limitations on the add/drop port count per bank is observed to be the dominant cause of blocking lightpaths while intra-node contention effects have only a limited impact. With increasing C, blocking is caused more because sufficient link capacity is not available and not because free add/drop ports are not available

Keywords

contention factor colorless directionless reconfigurable optical add/drop multiplexers (ROADMs) lightpath blocking 

节点内部分/插端口具有阻塞性的光网络光路阻塞率分析

摘要

阻塞因子限制了相同波长光通道在一个无色、 无向 ROADM 上的分/插。 本文提出了一个分析模型来估算在三种通信模型下此类节点的网络阻塞率。 仿真确认了在各种阻塞因子和不同负载分布情况下, 分析模型对网络光通道阻塞率评估的有效性。 研究表明, 随着每一个分/插池中分/插端口数目的增加, 网络光通道阻塞率下降并最终呈现饱和趋势。 同时, 一个足够大的阻塞因子能有效减少光通道阻塞率, 并能接近于最理想的无阻塞 ROADM 节点的性能。 当阻塞因子较小时, 每个分/插池拥有的分/插端口数目将成为光通道阻塞的主要因素, 而节点内部的阻塞性对整体性能的影响有限。 而随着阻塞因子的增大, 网络中链路可用容量将成为光通道阻塞的主要因素, 可用分/插端口数的影响变小。

关键词

阻塞因子 无色 无向 无阻塞 可重构光分/插复用器 (ROADMs) 光路阻塞 

References

  1. 1.
    Berthold J, Saleh A A M, Blair L, et al. Optical networking: past, present, and future. J Lightw Technol, 2008, 26: 1104–1118CrossRefGoogle Scholar
  2. 2.
    Keyworth B P. ROADM subsystems and technologies. In: Proceedings of Optical Fiber Communication Conference, Anaheim, 2005. 1–4Google Scholar
  3. 3.
    Earnshaw M P, Soole J B D. Integrated reconfigurable optical wavelength add-drop multiplexer. Electron Lett, 2002, 38: 1351–1352CrossRefGoogle Scholar
  4. 4.
    Ennser K, Rogowski T, Ghelfi P, et al. Reconfigurable add/drop multiplexer design to implement flexibility in optical networks. In: Proceedings of 2006 International Conference on Transparent Optical Networks, Nottingham, 2006. 74–77CrossRefGoogle Scholar
  5. 5.
    Chen J, Jacob J, Santivanez C, et al. En route to grouping-constraint free, colorless directionless ROADMs. In: Proceedings of National Fiber Optic Engineers Conference, San Diego, 2010. 1–3Google Scholar
  6. 6.
    Roorda P, Collings B. Evolution to colorless and directionless ROADM architectures. In: Proceedings of National Fiber Optic Engineers Conference, San Diego, 2008. 1–3Google Scholar
  7. 7.
    Collings B. Physical layer components, architectures and trends for agile photonic layer mesh networking. In: Proceedings of European Conference on Optical Communication, Vienna, 2009. 1–3Google Scholar
  8. 8.
    Thiagarajan S, Blair L, Berthold J. Direction-independent add/drop access for multi-degree ROADMs. In: Proceedings of Optical Fiber Communication Conference, San Diego, 2008. 1–3Google Scholar
  9. 9.
    Kim I, Palacharla P, Wang X, et al. Performance of colorless, non-directional ROADMs with modular client-side fiber cross-connects. In: Proceedings of National Fiber Optic Engineers Conference, Los Angeles, 2012. 1–3Google Scholar
  10. 10.
    Thiagarajan S, Asselin S. Nodal contention in colorless, directionless ROADMs using traffic growth models. In: Proceedings of National Fiber Optic Engineers Conference, Los Angeles, 2012. 1–3Google Scholar
  11. 11.
    Zami T. Contention simulation within dynamic, colorless and unidirectional/multidirectional optical cross-connects. In: Proceedings of European Conference and Exposition on Optical Communications, Geneva, 2011. 1–3Google Scholar
  12. 12.
    Abedifar V, Shahkooh S A, Emami A, et al. Design and simulation of a ROADM-based DWDM network. In: Proceedings of Iranian Conference on Electrical Engineering, Mashhad, 2013. 1–4Google Scholar
  13. 13.
    Ji P N, Aono Y. Colorless and directionless multi-degree reconfigurable optical add/drop multiplexers. In: Proceedings of Annual Wireless and Optical Communications Conference, Shanghai, 2010. 1–5Google Scholar
  14. 14.
    Jensen R, Lord A, Parsons N. Colorless, directionless, contentionless ROADM architecture using low-loss optical matrix switches. In: Proceedings of European Conference and Exhibition on Optical Communication, Torino, 2010. 1–3Google Scholar
  15. 15.
    Jensen R, Lord A, Parsons N. Highly scalable OXC-based contentionless ROADM architecture with reduced network implementation costs. In: Proceedings of Optical Fiber Communication Conference, Los Angeles, 2012. 1–3Google Scholar
  16. 16.
    Jensen R. Optical switch architectures for emerging colorless/directionless/contentionless ROADM networks. In: Proceedings of Optical Fiber Communication Conference, Los Angeles, 2011. 1–3Google Scholar
  17. 17.
    Devarajan A, Sandesha K, Gowrishankar R, et al. Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks. In: Proceedings of International Conference on Communication Systems and Networks, Bangalore, 2010. 1–10Google Scholar
  18. 18.
    Way W, Ji P N, Patel A N. Contention resolution within colorless and directionless ROADM. In: Proceedings of National Fiber Optic Engineers Conference, Anaheim, 2013. 1–3Google Scholar
  19. 19.
    Dˇzanko M, Mikac B, Mileti´c V, et al. Analytical and simulation availability models of ROADM architectures. In: Proceedings of International Conference on Telecommunications, Zagreb, 2013. 39–46Google Scholar
  20. 20.
    Gringeri S, Basch B, Shukla V, et al. Flexible architectures for optical transport nodes and networks. IEEE Commun Mag, 2010, 48: 40–50CrossRefGoogle Scholar
  21. 21.
    Pavon-Marino P, Bueno-Delgado M V. Dimensioning the add/drop contention factor of directionless ROADMs. J Lightw Technol, 2011, 29: 3265–3274CrossRefGoogle Scholar
  22. 22.
    Pavon-Marino P, Bueno-Delgado M V. Add/drop contention-aware RWA with directionless ROADMs: the offline lightpath restoration case. IEEE J Opt Commun Netw, 2012, 4: 671–680CrossRefGoogle Scholar
  23. 23.
    Woodward S L, Feuer M D, Palacharla P, et al. Intra-node contention in a dynamic, colorless, non-directional ROADM. In: Proceedings of Optical Fiber Communication Conference, San Diego, 2010. 1–3Google Scholar
  24. 24.
    Feuer M D, Woodward S L, Palacharla P, et al. Intra-node contention in dynamic photonic networks. J Lightw Technol, 2011, 29: 529–535CrossRefGoogle Scholar
  25. 25.
    Palacharla P, Wang X, Kim I, et al. Blocking performance in dynamic optical networks based on colorless, nondirectional ROADMs. In: Proceedings of National Fiber Optic Engineers Conference, Los Angele, 2011. 1–3Google Scholar
  26. 26.
    Kovacevic M, Acampora A. On wavelength translation in all-optical networks. In: Proceedings of Annual Joint Conference of the IEEE Computer and Communications Societies, Bringing Information to People, Boston, 1995. 413–422Google Scholar
  27. 27.
    Barry R A, Humblet P A. Models of blocking probability in all-optical networks with and without wavelength changers. IEEE J Sel Areas Commun, 1996, 14: 858–867CrossRefGoogle Scholar
  28. 28.
    Birman A. Computing approximate blocking probabilities for a class of all-optical networks. IEEE J Sel Areas Commun, 1996, 14: 852–857CrossRefGoogle Scholar
  29. 29.
    Shen G X, Bose S K, Cheng T H, et al. Performance analysis under dynamic loading of wavelength continuous and non-continuous WDM networks with shortest-path routing. Int J Commun Syst, 2001, 14: 407–418CrossRefzbMATHGoogle Scholar
  30. 30.
    Tripathi T, Sivarajan K N. Computing approximate blocking probabilities in wavelength routed all-optical networks with limited-range wavelength conversion. In: Proceedings of Annual Joint Conference of the IEEE Computer and Communications Societies, New York, 1999. 329–336Google Scholar
  31. 31.
    Subramaniam S, Azizoglu M, Somani A K. All-optical networks with sparse wavelength conversion. IEEE ACM Trans Netw, 1996, 4: 544–557CrossRefGoogle Scholar
  32. 32.
    Li L, Somani A K. A new analytical model for multifiber WDM networks. IEEE J Sel Areas Commun, 2000, 18: 2138–2145CrossRefGoogle Scholar
  33. 33.
    Subramaniam S, Barry R A. Wavelength assignment in fixed routing WDM networks. In: Proceedings of International Conference on Communications, Montreal, 1997. 406–410CrossRefGoogle Scholar
  34. 34.
    Shen G X, Cheng T H, Bose S K, et al. Approximate analysis of limited-range wavelength conversion all-optical WDM networks. Comput Commun, 2001, 24: 949–957CrossRefGoogle Scholar
  35. 35.
    Shen G X, Bose S K, Cheng T H, et al. The impact of the number of add/drop ports in wavelength routing all-optical networks. Opt Netw Mag, 2003, 4: 112–122Google Scholar
  36. 36.
    Turkcu O, Subramaniam S. Blocking and waveband assignment in WDM networks with limited reconfigurability. In: Proceedings of Optical Fiber Communication Conference, Anaheim, 2007. 1–3Google Scholar
  37. 37.
    Turkcu O, Subramaniam S. Blocking in reconfigurable optical networks. In: Proceedings of International Conference on Computer Communications, Anchorage, 2007. 188–196Google Scholar
  38. 38.
    Turkcu O, Subramaniam S. Blocking analysis of limited reconfigurable optical networks. In: Proceedings of International Conference on Computer Communications and Networks, Honolulu, 2007. 216–221Google Scholar
  39. 39.
    Li Y C, Gao L, Peng L M, et al. Modeling the impact of ROADM color and directional constraints on optical network performance. In: Proceedings of Asia Communications and Photonics Conference, Guangzhou, 2012. 1–3Google Scholar
  40. 40.
    Li Y C, Gao L, Shen G X, et al. Impact of ROADM colorless, directionless, and contentionless (CDC) features on optical network performance. J Opt Commun Netw, 2012. 4: B58–B67CrossRefGoogle Scholar
  41. 41.
    Gao L, Li Y C, Shen G X. Lightpath blocking performance analytical model for ROADMs with intra-node add/drop contention. In: Proceedings of International Conference on Communications in China, Shanghai, 2014. 97–101Google Scholar
  42. 42.
    Gao L, Liu H, Li Y C, et al. Modeling impact of ROADM intra-node add/drop contention on a single node lightpath blocking performance. China Commun, 2015, 12: 89–98CrossRefGoogle Scholar
  43. 43.
    Gao L, Li Y C, Shen G X. Modeling the impact of ROADM intra-node add/drop contention on optical network performance. In: Proceedings of Asia Communications and Photonics Conference, Beijing, 2013. 1–3Google Scholar
  44. 44.
    Girard A. Routing and Dimensioning in Circuit Switched Networks. Boston: Addison-Wesley Longman Publishing Co., Inc., 1990Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yongcheng Li
    • 1
  • Li Gao
    • 1
  • Sanjay K. Bose
    • 2
  • Weidong Shao
    • 1
  • Xiaoling Wang
    • 1
  • Gangxiang Shen
    • 1
    Email author
  1. 1.School of Electronic and Information EngineeringSoochow UniversitySuzhouChina
  2. 2.Department of Electronics and Electrical EngineeringIndian Institute of TechnologyGuwahatiIndia

Personalised recommendations