Advertisement

An overview of transmission theory and techniques of large-scale antenna systems for 5G wireless communications

  • Dongming Wang
  • Yu Zhang
  • Hao Wei
  • Xiaohu YouEmail author
  • Xiqi Gao
  • Jiangzhou Wang
Review

Abstract

To meet the future demand for huge traffic volume of wireless data service, the research on the fifth generation (5G) mobile communication systems has been undertaken in recent years. It is expected that the spectral and energy efficiencies in 5G mobile communication systems should be ten-fold higher than the ones in the fourth generation (4G) mobile communication systems. Therefore, it is important to further exploit the potential of spatial multiplexing of multiple antennas. In the last twenty years, multiple-input multiple-output (MIMO) antenna techniques have been considered as the key techniques to increase the capacity of wireless communication systems. When a large-scale antenna array (which is also called massive MIMO) is equipped in a base-station, or a large number of distributed antennas (which is also called large-scale distributed MIMO) are deployed, the spectral and energy efficiencies can be further improved by using spatial domain multiple access. This paper provides an overview of massive MIMO and large-scale distributed MIMO systems, including spectral efficiency analysis, channel state information (CSI) acquisition, wireless transmission technology, and resource allocation.

Keywords

the fifth generation mobile communication massive MIMO large-scale distributed antenna systems spectral efficiency channel state information acquisition multi-user MIMO resource allocation 

References

  1. 1.
    Ericsson. Ericsson mobility report. http://www.ericsson.com/res/docs/2015/ericsson-mobility-report-june-2015.pdf. 2015Google Scholar
  2. 2.
    You X H, Pan Z W, Gao X Q, et al. The 5G mobile communication: the development trends and its emerging key techniques (in Chinese). Sci Sin Inform, 2014, 44: 551–563Google Scholar
  3. 3.
    Ma Z, Zhang Z Q, Ding Z G, et al. Key techniques for 5G wireless communications: network architecture, physical layer, and MAC layer perspectives. Sci China Inf Sci, 2015, 58: 041301Google Scholar
  4. 4.
    Paulraj A J, Gore D A, Nabar R U, et al. An overview of MIMO communications-a key to gigabit wireless. Proc IEEE, 2004, 2: 198–218CrossRefGoogle Scholar
  5. 5.
    Marzetta T L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun, 2010, 11: 3590–3600CrossRefGoogle Scholar
  6. 6.
    You X H, Wang D M, Sheng B, et al. Cooperative distributed antenna systems for mobile communications. IEEE Wirel Commun, 2010, 17: 35–43CrossRefGoogle Scholar
  7. 7.
    Zhu H. Performance comparison between distributed antenna and microcellular systems. IEEE J Sel Area Commun, 2011, 29: 1151–1163CrossRefGoogle Scholar
  8. 8.
    Wang J, Zhu H, Gomes N. Distributed antenna systems for mobile communications in high speed trains. IEEE J Sel Area Commun, 2012, 30: 675–683CrossRefGoogle Scholar
  9. 9.
    Osman H, Zhu H, Toumpakaris D, et al. Achievable rate evaluation of in-building distributed antenna systems. IEEE Trans Wirel Commun, 2013, 12: 3510–3521CrossRefGoogle Scholar
  10. 10.
    Dai L. A comparative study on uplink sum capacity with co-located and distributed antennas. IEEE J Sel Area Commun, 2011, 29: 1200–1213CrossRefGoogle Scholar
  11. 11.
    Wang J, Dai L. Asymptotic rate analysis of downlink multi-user systems with co-located and distributed antennas. IEEE Trans Wirel Commun, 2015, 14: 3046–3058CrossRefGoogle Scholar
  12. 12.
    Wang D, Wang J, You X, et al. Spectral efficiency of distributed MIMO systems. IEEE J Sel Area Commun, 2013, 10: 2112–2127CrossRefGoogle Scholar
  13. 13.
    Huh H, Caire G, Papadopoulos H C, et al. Achieving massive MIMO spectral efficiency with a not-so-large number of antennas. IEEE Trans Wirel Commun, 2012, 9: 3226–3239CrossRefGoogle Scholar
  14. 14.
    Wang D M, Zhao Z L, Huang Y Q, et al. Large-scale multi-user distributed antenna system for 5G wireless communications. In: Proceedings of IEEE 81st Vehicular Technology Conference Spring, Glasgow, 2015. 1–5Google Scholar
  15. 15.
    Tulino A M, Verdu S. Random matrix theory and wireless communications. In: Foundations and Trends in Communications and Information Theory. Norwell: Now Publishers Inc, 2004Google Scholar
  16. 16.
    Lu A, Gao X Q, Xiao C S. A free deterministic equivalent for the capacity of MIMO MAC with distributed antenna sets. In: Proceedings of IEEE International Conference on Communications, London, 2015. 1751–1756Google Scholar
  17. 17.
    Zhang J, Wen C K, Jin S, et al. On capacity of large-scale MIMO multiple access channels with distributed sets of correlated antennas. IEEE J Sel Area Commun, 2013, 2: 133–148CrossRefGoogle Scholar
  18. 18.
    Ngo H Q, Larsson E G, Marzetta T L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans Commun, 2013, 4: 1436–1449Google Scholar
  19. 19.
    Hoydis J, Brinkz S, Debbah M. Massive MIMO in the UL/DL of cellular networks: how many antennas do we need. IEEE J Sel Area Commun, 2013, 2: 160–171CrossRefGoogle Scholar
  20. 20.
    Wang D M, Ji C, Gao X Q, et al. Uplink sum-rate analysis of multi-cell multi-user massive MIMO system. In: Proceedings of IEEE International Conference on Communications, Budapest, 2013. 5404–5408Google Scholar
  21. 21.
    Wang D M, Ji C, Sun S H, et al. Spectral efficiency of multicell multi-user DAS with pilot contamination. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, 2013. 3208–3212Google Scholar
  22. 22.
    Li J M, Wang D M, Zhu P C, et al. Downlink spectral efficiency of multi-cell multi-user large-scale DAS with pilot contamination. In: Proceedings of IEEE International Conference on Communications, London, 2015. 2011–2016Google Scholar
  23. 23.
    Andrews J, Baccelli F, Ganti R. A tractable approach to coverage and rate in cellular networks. IEEE Trans Commun, 2011, 11: 3122–3134CrossRefGoogle Scholar
  24. 24.
    Baccelli F, Giovanidis A. A stochastic geometry framework for analyzing pairwise-cooperative cellular networks. IEEE Trans Wirel Commun, 2015, 2: 794–808CrossRefGoogle Scholar
  25. 25.
    Fei Z S, Ding H C, Xing C W, et al. Performance analysis for range expansion in heterogeneous networks. Sci China Inf Sci, 2014, 57: 082305Google Scholar
  26. 26.
    Lin Y, Yu W. Ergodic capacity analysis of downlink distributed antenna systems using stochastic geometry. In: Proceedings of IEEE International Conference on Communications, Budapest, 2013. 3338–3343Google Scholar
  27. 27.
    Bai T Y, Heath R W. Analyzing uplink SIR and rate in massive MIMO systems using stochastic geometry. arXiv:1510.02538. 2015Google Scholar
  28. 28.
    Wang D, You X, Wang J, et al. Spectral efficiency of distributed MIMO cellular systems in a composite fading channel. In: Proceedings of IEEE International Conference on Communications, Beijing, 2008. 1259–1264Google Scholar
  29. 29.
    Yang A, Jing Y, Xing C, et al. Performance analysis and location optimization for massive MIMO systems with circularly distributed antennas. IEEE Trans Wirel Commun, 2015, 10: 5659–5671CrossRefGoogle Scholar
  30. 30.
    Aggarwal R, Koksal C E, Schniter P. On the design of large scale wireless systems. IEEE J Sel Area Commun, 2013, 2: 215–225CrossRefGoogle Scholar
  31. 31.
    Xin Y, Wang D, Li J. Area spectral efficiency and area energy efficiency of massive MIMO cellular systems. IEEE Trans Veh Tech, in press. doi: 10.1109/TVT.2015.2436896Google Scholar
  32. 32.
    Bjornson E, Hoydis J, Kountouris M, et al. Massive MIMO systems with non-ideal hardware: energy efficiency, estimation, and capacity limits. IEEE Trans Inf Theory, 2015, 11: 7112–7139MathSciNetGoogle Scholar
  33. 33.
    Gustavsson U, Sanchez-Perez C, Eriksson T, et al. On the impact of hardware impairments on massive MIMO. In: Globecom Workshops (GC Wkshps), Austin, 2014. 294–300Google Scholar
  34. 34.
    Fernandes F, Ashikhmin A, Marzetta T L. Inter-cell interference in non-cooperative TDD large scale antenna systems. IEEE J Sel Area Commun, 2013, 2: 192–201CrossRefGoogle Scholar
  35. 35.
    Zhang H, Zheng X, Xu W, et al. On massive MIMO performance with semi-orthogonal pilot-assisted channel estimation. EURASIP J Wirel Commun Netw, in press. doi: 10.1186/1687-1499-2014-220Google Scholar
  36. 36.
    Jin S, Li M M, Huang Y M, et al. Pilot scheduling schemes for multi-cell massive multiple-input-multiple-output transmission. IET Commun, 2015, 9: 689–700CrossRefGoogle Scholar
  37. 37.
    You L, Gao X, Xia X G, et al. Pilot reuse for massive MIMO transmission over spatially correlated Rayleigh fading channels. IEEE Trans Wirel Commun, 2015, 6: 3352–3366CrossRefGoogle Scholar
  38. 38.
    Yin H, Gesbert D, Filippou M, et al. A coordinated approach to channel estimation in large-scale multiple-antenna systems. IEEE J Sel Area Commun, 2013, 2: 264–273CrossRefGoogle Scholar
  39. 39.
    Chen Z, Yang C. Pilot decontamination in massive MIMO systems: exploiting channel sparsity with pilot assignment. In: Proceedings of IEEE Global Conference on Signal and Information Processing (GlobalSIP), Atlanta, 2014. 637–641Google Scholar
  40. 40.
    Gao Z, Dai L, Wang Z. Structured compressive sensing based superimposed pilot design in downlink large-scale MIMO systems. Electron Lett, 2014, 12: 896–898CrossRefGoogle Scholar
  41. 41.
    Yang Y, Bai B, Chen W. How much spectrum can be reused in 5G cellular networks a matrix graph approach. arXiv: 1401.4750. 2014Google Scholar
  42. 42.
    Atzeni I, Arnau J, Debbah M. Fractional pilot reuse in massive MIMO systems. arXiv:1503.07321. 2015CrossRefGoogle Scholar
  43. 43.
    Choi J, Chance Z, Love D J, et al. Noncoherent trellis coded quantization: a practical limited feedback technique for massive MIMO systems. IEEE Trans Commun, 2013, 12: 5016–5029CrossRefGoogle Scholar
  44. 44.
    Noh S, Zoltowski M D, Sung Y, et al. Pilot beam pattern design for channel estimation. IEEE J Sel Topics Signal Process, 2014, 5: 787–801CrossRefGoogle Scholar
  45. 45.
    Choi J, Love D, Bidigare P. Downlink training techniques for FDD massive MIMO systems: open-loop and closed-loop training with memory. IEEE J Sel Topics Signal Process, 2014, 8: 802–814CrossRefGoogle Scholar
  46. 46.
    You L, Gao X, Swindlehurst A L, et al. Channel acquisition for massive MIMO-OFDM with adjustable phase shift pilots. IEEE Trans Signal Process, 2015, 6: 1461–1476MathSciNetGoogle Scholar
  47. 47.
    Adeogun R O. Channel prediction for mobile MIMO wireless communication systems. Dissertation for Ph.D. Degree. Wellington: Victoria University of Wellington, 2015. 1–313Google Scholar
  48. 48.
    Huang M, Chen X, Zhou S, et al. Low-complexity subspace tracking based channel estimation method for OFDM systems in time-varying channels. In: Proceedings of IEEE International Conference on Communications (ICC), Istanbul, 2006. 4618–4623Google Scholar
  49. 49.
    Simeone O, Bar-Ness Y, Spagnolini U. Pilot-based channel estimation for OFDM systems by tracking the delaysubspace. IEEE Trans Wirel Commun, 2004, 1: 315–325CrossRefGoogle Scholar
  50. 50.
    Zhu Y, Liu L, Wang A, et al. DoA estimation and capacity analysis for 2D active massive MIMO systems. In: Proceedings of IEEE International Conference on Communications, Budapest, 2013. 4630–4634Google Scholar
  51. 51.
    Qi C, Huang Y, Jin S, et al. Sparse channel estimation based on compressed sensing for massive MIMO systems. In: Proceedings of IEEE International Conference on Communications (ICC), London, 2015. 4558–4563Google Scholar
  52. 52.
    Masood M, Afify L H, Al-Naffouri T Y. Efficient coordinated recovery of sparse channels in massive MIMO. IEEE Trans Signal Process, 2015, 1: 104–118MathSciNetCrossRefGoogle Scholar
  53. 53.
    Masood M, Al-Naffouri T Y. Sparse reconstruction using distribution agnostic Bayesian matching pursuit. IEEE Trans Signal Process, 2013, 21: 5298–5309CrossRefGoogle Scholar
  54. 54.
    Ngo B Q, Larsson E G. EVD-based channel estimation in multicell multiuser MIMO systems with very large antenna arrays. In: Proceedings of IEEE International Conference on Acoust, Speech, Signal Processing, Kyoto, 2012. 3249–3252Google Scholar
  55. 55.
    Muller R F, Cottatellucci L, Vehkaper M. Blind pilot decontamination. IEEE J Sel Topics Signal Process, 2014, 5: 773–786CrossRefGoogle Scholar
  56. 56.
    Ma J, Li P. Data-aided channel estimation in large antenna systems. IEEE Trans Signal Process, 2014, 12: 3111–3124MathSciNetGoogle Scholar
  57. 57.
    Rao X, Lau V K N. Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems. IEEE Trans Signal Process, 2014, 12: 3261–3271MathSciNetGoogle Scholar
  58. 58.
    Gao Z, Dai L, Wang Z, et al. Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO. IEEE Trans Signal Process, 2015, 23: 6169–6183MathSciNetCrossRefGoogle Scholar
  59. 59.
    Chen K F, Liu Y C, Su Y T. On composite channel estimation in wireless massive MIMO systems. In: Proceedings of IEEE Globecom Workshops, Atlanta, 2013. 135–139Google Scholar
  60. 60.
    Wei H, Wang D M, Zhu H L, et al. Mutual coupling calibration for multiuser massive MIMO systems. IEEE Trans Wirel Commun, 2016, 15: 606–619CrossRefGoogle Scholar
  61. 61.
    Zhang W, Ren H, Pan C, et al. Large-scale antenna systems with UL/DL hardware mismatch: achievable rates analysis and calibration. IEEE Trans Commun, 2015, 4: 1216–1229CrossRefGoogle Scholar
  62. 62.
    Wei H, Wang D M, Wang J Z, et al. Impact of RF mismatches on the performance of massive MIMO systems with ZF precoding. Sci China Inf Sci, 2016, 59: 022302CrossRefGoogle Scholar
  63. 63.
    Nishimori K, Hiraguri T, Ogawa T, et al. Effectiveness of implicit beamforming using calibration technique in massive MIMO system. In: Proceedings of IEEE International Workshop on Electromagnetics (iWEM), Sapporo, 2014. 117–118Google Scholar
  64. 64.
    Kaltenberger F, Jiang H, Guillaud M. Relative channel reciprocity calibration in MIMO/TDD systems. In: Proceedings of IEEE Future Network and Mobile Summit, Florence, 2010. 1–10Google Scholar
  65. 65.
    Shepard C, Yu H, Anand N. Argos: practical many-antenna base stations. In: Proceedings of the 18th annual International Conference on Mobile Computing and Networking, Istanbul, 2012. 53–64Google Scholar
  66. 66.
    Rogalin R, Bursalioglu O Y, Papadopoulos H C. Hardware-impairment compensation for enabling distributed largescale MIMO. In: Proceedings of IEEE Information Theory and Applications Workshop (ITA), San Diego, 2013. 1–10Google Scholar
  67. 67.
    Rogalin R, Bursalioglu O Y, Papadopoulos H, et al. Scalable synchronization and reciprocity calibration for distributed multiuser MIMO. IEEE Trans Wirel Commun, 2014, 13: 1815–1831CrossRefGoogle Scholar
  68. 68.
    Wei H, Wang D M, Wang J Z, et al. TDD reciprocity calibration for multi-user massive MIMO systems with iterative coordinate descent. Sci China Inf Sci, in press. doi: 10.1007/s11432-015-5441-4Google Scholar
  69. 69.
    Rahul H S, Kumar S, Katabi D. JMB: scaling wireless capacity with user demands. In: Proceedings of ACMSIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication. New York: ACM, 2012. 235–246Google Scholar
  70. 70.
    Yu W. Competition and cooperation in multiuser communication environments. Dissertation for Ph.D. Degree. Stanford: Stanford University, 2002Google Scholar
  71. 71.
    Kammoun A, Muller A, Bjornson E, et al. Linear precoding based on polynomial expansion: large-scale multi-cell MIMO systems. IEEE J Sel Topics Signal Process, 2014, 8: 861–875CrossRefGoogle Scholar
  72. 72.
    Huang Y, Tang W, Li J, et al. On the performance of iterative receivers in massive MIMO systems with pilot contamination. In: proceedings of IEEE 9th Conference on Industrial Electronics and Applications (ICIEA), Hangzhou, 2014. 52–57Google Scholar
  73. 73.
    Wen C K, Chen J C, Wong K K, et al. Message passing algorithm for distributed downlink regularized zero-forcing beamforming with cooperative base stations. IEEE Trans Wirel Commun, 2014, 13: 2920–2930CrossRefGoogle Scholar
  74. 74.
    Sun C, Gao X, Jin S, et al. Beam division multiple access transmission for massive MIMO communications. IEEE Trans Commun, 2015, 6: 2170–2184CrossRefGoogle Scholar
  75. 75.
    Nam J, Ahn J Y, Caire G. Joint spatial division and multiplexing–the large-scale array regime. IEEE Trans Inf Theory, 2013, 10: 6441–6463MathSciNetGoogle Scholar
  76. 76.
    Narasimhan T L, Chockalingam A. Channel hardening-exploiting message passing (CHEMP) receiver in large-scale MIMO systems. IEEE J Sel Topics Signal Process, 2014, 8: 847–860CrossRefGoogle Scholar
  77. 77.
    Dai L L, Gao X Y, Su X, et al. Low-complexity soft-output signal detection based on Gauss-Seidel method for uplink multi-user large-scale MIMO systems. IEEE Trans Veh Tech, 2014, 64: 4839–4845CrossRefGoogle Scholar
  78. 78.
    Fadlallah Y, Aissa A, Amis K, et al. New iterative detector of MIMO transmission using sparse decomposition. IEEE Trans Veh Tech, 2014, 64: 3458–3464CrossRefGoogle Scholar
  79. 79.
    Cao J, Wang D, Li J, et al. Uplink sum-rate analysis of massive MIMO system with pilot contamination and CSI delay. Wirel Personal Commun, 2014, 1: 297–312CrossRefGoogle Scholar
  80. 80.
    Zhang W, Lamare R C, Pan C, et al. Widely linear block diagonalization type precoding in massive MIMO systems with IQ imbalance. In: Proceedings of IEEE International Conference on Communications, London, 2015. 1789–1794Google Scholar
  81. 81.
    Han S, Yang C, Wang G, et al. Coordinated multipoint transmission strategies for TDD systems with non-ideal channel reciprocity. IEEE Trans Commun, 2013, 10: 4256–4270CrossRefGoogle Scholar
  82. 82.
    Fan L, Jin S, Wen C K, et al. Uplink achievable rate for massive MIMO systems with low-resolution ADC. IEEE Commun Lett, 2015, 19: 2186–2189CrossRefGoogle Scholar
  83. 83.
    Zhang T C, Wen C K, Jin S, et al. Mixed-ADC massiveMIMO detectors: performance analysis and design optimization. arXiv:1509.07950. 2015Google Scholar
  84. 84.
    Zhu H, Wang J. Chunk-based resource allocation in OFDMA systems-part I: chunk allocation. IEEE Trans Commun, 2009, 9: 2734–2744Google Scholar
  85. 85.
    Zhu H, Wang J. Chunk-based resource allocation in OFDMA Systems-Part II: joint chunk, power and bit allocation. IEEE Trans Commun, 2012, 2: 499–509CrossRefGoogle Scholar
  86. 86.
    Zhu H, Karachontzitis S, Toumpakaris D. Low-complexity resource allocation and its application to distributed antenna systems. IEEE Wirel Commun, 2010, 3: 44–50CrossRefGoogle Scholar
  87. 87.
    Nam J Y, Adhikary A, Ahn J Y, et al. Joint spatial division and multiplexing: opportunistic beamforming, user grouping and simplified downlink scheduling. IEEE J Sel Topics Signal Process, 2014, 8: 876–890CrossRefGoogle Scholar
  88. 88.
    Xu Y, Yue G, Mao S. User grouping for massive MIMO in FDD systems: new design methods and analysis. IEEE Access, 2014, 2: 947–959CrossRefGoogle Scholar
  89. 89.
    Xu X D, Wu C L, Tao X F, et al. Maximum utility principle access control for beyond 3G mobile system. Wirel Commun Mobile Comput, 2007, 7: 951–959CrossRefGoogle Scholar
  90. 90.
    Dai L. An uplink capacity analysis of the distributed antenna system (DAS): from cellular das to das with virtual cells. IEEE Trans Wirel Commun, 2014, 13: 2717–2731CrossRefGoogle Scholar
  91. 91.
    Dai B B, Yu W. Sparse beamforming and user-centric clustering for downlink cloud radio access network. IEEE Access, 2014, 2: 1326–1339CrossRefGoogle Scholar
  92. 92.
    Liu J, Wang D. An improved dynamic clustering algorithm for multi-user distributed antenna system. In: Proceedings of IEEE International Conference on Wireless Communications Signal Processing (WCSP), Nanjing, 2009. 1–5Google Scholar
  93. 93.
    Fan C, Zhang Y J, Yuan X. Dynamic nested clustering for parallel PHY-layer processing in cloud-RANs. IEEE Trans Wirel Commun, 2016, 15: 1881–1894CrossRefGoogle Scholar
  94. 94.
    Ratnam V V, Caire G, Molisch A F. Capacity analysis of interlaced clustering in a distributed antenna system. In: Proceedings of IEEE International Conference on Communications (ICC), London, 2015. 578–582Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Dongming Wang
    • 1
  • Yu Zhang
    • 1
  • Hao Wei
    • 1
  • Xiaohu You
    • 1
    Email author
  • Xiqi Gao
    • 1
  • Jiangzhou Wang
    • 2
  1. 1.National Mobile Communications Research LaboratorySoutheast UniversityNanjingChina
  2. 2.School of Engineering and Digital ArtsUniversity of KentCanterburyUK

Personalised recommendations