Advertisement

L 1 adaptive control of a generic hypersonic vehicle model with a blended pneumatic and thrust vectoring control strategy

  • Qi Chen
  • Jing Wan
  • Jianliang Ai
Research Paper

Abstract

The extreme aeroheating at hypersonic regime and the insufficient dynamic pressure in the near space limit the achievable performance of the hypersonic vehicles using aerosurfaces alone. In this paper, an integrated pneumatic and thrust vectoring control strategy is employed to design a control scheme for the longitudinal dynamics of a hypersonic vehicle model. The methodology reposes upon a division of the model dynamics, and an L 1 adaptive control architecture is applied to the design of the inner-loop and outer-loop controllers. Further, a control allocation algorithm is developed to coordinate pneumatic and thrust vectoring control. Simulation results demonstrate that the allocation algorithm is effective in control coordination, and the proposed control scheme achieves excellent tracking performance in spite of aerodynamic uncertainties.

Keywords

hypersonic flight control L1 adaptive control thrust vectoring control allocation parametric uncertainty 

采用气动/矢量推力控制策略的L 1自适应高超音速飞行控制器设计

创新点

受到高超音速飞行状态下气动加热效应,以及在临近空间飞行时气动舵面效率的影响,仅采用舵面控制将限制控制性能的发挥。本文采用了融合气动/矢量推力的控制策略,采用L 1自适应控制方法为一款通用高超音速飞行器纵向模型设计了控制器。通过调整分配参数,在不同飞行段改变气动控制和矢量推力控制的权重,从而突破上述限制。仿真结果验证了这一控制策略的有效性,同时,在引入气动参数不确定性的情况下取得了良好的控制精度。

Keywords

高超音速飞行控制 L1自适应控制 矢量推力 控制分配 参数不确定性 
032203 

References

  1. 1.
    Hallion R. The history of hypersonics: or, ‘Back to the future: again and again’. In: Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, 2005. AIAA 2005-329Google Scholar
  2. 2.
    Fiorentini L, Serrani A, Bolender M A, et al. Robust nonlinear sequential loop closure control design for an air-breathing hypersonic vehicle model. In: Proceedings of American Control Conference, Washington, 2008. 3458–3463Google Scholar
  3. 3.
    Christopher P, Morgan B, Ilya K. Model predictive control guidance with extended command governor inner-Loop flight control for hypersonic vehicles. In: Proceedings of AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, 2013. AIAA 2013-5028Google Scholar
  4. 4.
    Daniel P W, Anuradha M A, Jonathan A M, et al. Adaptive control of a generic hypersonic vehicle. In: Proceedings of AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, 2013. AIAA 2013-4514Google Scholar
  5. 5.
    Preller D, Smart M K. Longitudinal control strategy for hypersonic accelerating vehicles. J Spacecr Rockets, 2015, 52: 993–999CrossRefGoogle Scholar
  6. 6.
    Buschek H, Calise A J. Uncertainty modeling and fixed-order controller design for a hypersonic vehicle model. J Guid Control Dyn, 1997, 20: 42–48CrossRefzbMATHGoogle Scholar
  7. 7.
    Chavez F R, Schmidt D K. Uncertainty modeling for multivariable-control robustness analysis of elastic high-speed vehicles. J Guid Control Dyn, 1999, 22: 87–95CrossRefGoogle Scholar
  8. 8.
    Lind R. Linear parameter-varying modeling and control of structural dynamics with aerothermoelastic effects. J Guid Control Dyn, 2002, 25: 733–739CrossRefGoogle Scholar
  9. 9.
    Xu H J, Mirmirani M D, Ioannou P A. Adaptive sliding mode control design for a hypersonic flight vehicle. J Guid Control Dyn, 2004, 27: 829–838CrossRefGoogle Scholar
  10. 10.
    Fiorentini L, Serrani A, Bolender M A, et al. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles. J Guid Control Dyn, 2009, 32: 402–417CrossRefGoogle Scholar
  11. 11.
    Wilcox Z D, MacKunis W, Bhat S, et al. Lyapunov-based exponential tracking control of a hypersonic aircraft with aerothermoelastic effects. J Guid Control Dyn, 2010, 33: 1213–1224CrossRefGoogle Scholar
  12. 12.
    Sun H B, Li S H, Sun C Y. Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn, 2013, 73: 229–244MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bu X W, Wu X Y, Zhang R, et al. Tracking differentiator design for the robust backstepping control of a flexible air-breathing hypersonic vehicle. J Frankl Inst-Eng Appl Math, 2015, 352: 1739–1765MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yang J, Li S H, Sun C Y, et al. Nonlinear-disturbance-observer-based robust flight control for air-breathing hypersonic vehicles. IEEE Trans Aerosp Electron Syst, 2013, 49: 1263–1275CrossRefGoogle Scholar
  15. 15.
    Xu B, Sun F, Liu H, et al. Adaptive Kriging controller design for hypersonic flight vehicle via back-stepping. IET Contr Theory Appl, 2012, 6: 487–497MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sun H F, Yang Z L, Zeng J P. New tracking-control strategy for airbreathing hypersonic vehicles. J Guid Control Dyn, 2013, 36: 846–859CrossRefGoogle Scholar
  17. 17.
    Huang H, Zhang Z. Characteristic model-based H2/H1 robust adaptive control during the re-entry of hypersonic cruise vehicles. Sci China Inf Sci, 2014, 58: 1–21Google Scholar
  18. 18.
    Su X F, Jia Y M. Constrained adaptive tracking and command shaped vibration control of flexible hypersonic vehicles. IET Contr Theory Appl, 2015, 9: 1857–1868MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zhi Y, Yang Y. Discrete control of longitudinal dynamics for hypersonic flight vehicle using neural networks. Sci China Inf Sci, 2015, 58: 1–10MathSciNetCrossRefGoogle Scholar
  20. 20.
    Pu Z Q, Yuan R Y, Tan X M, et al. Active robust control of uncertainty and flexibility suppression for air-breathing hypersonic vehicles. Aerosp Sci Tech, 2015, 42: 429–441CrossRefGoogle Scholar
  21. 21.
    Geng J, Sheng Y Z, Liu X D. Finite-time sliding mode attitude control for a reentry vehicle with blended aerodynamic surfaces and a reaction control system. Chin J Aeronaut, 2014, 27: 964–976CrossRefGoogle Scholar
  22. 22.
    Cai G H, Song J M, Chen X X. Command tracking control system design and evaluation for hypersonic reentry vehicles driven by a reaction control system. J Aerosp Eng, 2015, 28: 04014115CrossRefGoogle Scholar
  23. 23.
    Cai G, Song J, Chen X. Control system design for hypersonic reentry vehicle driven by aerosurfaces and reaction control system. P I Mech Eng G-J Aer, 2014, 229: 1575–1587CrossRefGoogle Scholar
  24. 24.
    Cen Z, Smith T, Stewart P, et al. Integrated flight/thrust vectoring control for jet-powered unmanned aerial vehicles with ACHEON propulsion. P I Mech Eng G-J Aer, 2014, 229: 1057–1075CrossRefGoogle Scholar
  25. 25.
    Wang H L, Qin G Z, Wang Q Y, et al. Tracking control for a hypersonic air-breathing vehicle with thrust vectoring nozzles (in Chinese). Sci Sin-Phys Mech Astron, 2013, 43: 415–423CrossRefGoogle Scholar
  26. 26.
    Poderico M, Morani G, Sollazzo A, et al. Fault-tolerant control laws against sensors failures for hypersonic flight. In: Proceedings of the 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, Tours, 2012. AIAA 2012-5967Google Scholar
  27. 27.
    Hellmundt F, Wildschek A, Maier R, et al. Comparison of L1 adaptive augmentation strategies for a differential PI baseline controller on a longitudinal F16 aircraft model. In: Advances in Aerospace Guidance, Navigation and Control. Berlin: Springer, 2015. 99–118Google Scholar
  28. 28.
    Hovakimyan N, Cao C. L1 Adaptive Control Theory: Guaranteed Robustness With Fast Adaptation. Philadelphia: Society for Industrial and Applied Mathematics, 2010CrossRefzbMATHGoogle Scholar
  29. 29.
    Lei Y, Cao C, Cliff E, et al. Design of an L1 adaptive controller for air-breathing hypersonic vehicle model in the presence of unmodeled dynamics. In: Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, 2007. AIAA 2007-6527Google Scholar
  30. 30.
    Prime Z, Doolan C, Cazzolato B. Longitudinal L1 Adaptive control of a hypersonic re-entry experiment. In: Proceedings of the 15th Australian International Aerospace Congress (AIAC15), Melbourne, 2013. 717–726Google Scholar
  31. 31.
    Banerjee S, Wang Z, Baur B, et al. L1 Adaptive control augmentation for the longitudinal dynamics of a hypersonic glider. J Guid Control Dyn, 2015, 39: 275–291CrossRefGoogle Scholar
  32. 32.
    Wang Q, Stengel R F. Robust nonlinear control of a hypersonic aircraft. J Guid Control Dyn, 2000, 23: 577–585CrossRefGoogle Scholar
  33. 33.
    Tony A, Zhu J, Michael B, et al. Flight control of hypersonic scramjet vehicles using a differential algebraic approach. In: Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, 2006. AIAA 2006-6559Google Scholar
  34. 34.
    Xu B, Shi Z K, Yang C G, et al. Neural control of hypersonic flight vehicle model via time-scale decomposition with throttle setting constraint. Nonlinear Dyn, 2013, 73: 1849–1861MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Banerjee S, Creagh M A, Boyce R R. L1 adaptive control augmentation configuration for a hypersonic glider in the presence of uncertainties. In: Proceedings of AIAA Guidance, Navigation, and Control Conference, National Harbor, Maryland, 2014. AIAA 2014-0453Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Aeronautics and AstronauticsFudan UniversityShanghaiChina
  2. 2.Institute of Vehicle DesignFudan UniversityShanghaiChina

Personalised recommendations