Science China Information Sciences

, Volume 58, Issue 10, pp 1–14 | Cite as

A general law of human mobility

  • Xiao Liang
  • JiChang Zhao
  • Ke Xu
Research Paper Special Focus on Intelligent City and Big Data


The intrinsic factors that drive human mobility have remained unclear for decades. Our observations from both intra-urban and inter-urban trips demonstrate a general law of human mobility. Specifically, the probability that a trip will occur is inversely proportional to the size of population located inside a circle with radius equal to the travel distance centered at the trip origin. A simple parameterless rank-based model is presented; this model can predict human flows with a convincing fidelity. Moreover, existing models can be implemented as special cases of our model, suggesting that our model is stable at more spatial scales. Our model also creates a fundamental bridge between individual mobility and social relationships.


human mobility, social mobility, general law, rank-based model, flux prediction 



近年来关于人类移动行为的研究不断出现, 但关于该行为背后的本质动因却并不明晰, 相关方向仍存在不少开放问题。本文通过分析城市内和城市间大量移动轨迹和调查数据发现, 人类在不同尺度空间移动时存在一个普适的规律, 即个体从某区域移动至另一区域的概率与这两个区域之间的人口规模成反比。基于该法则, 本文提出无参的基于人口排名的移动行为预测模型, 实现了不同空间尺度下移动流量的稳定预测。同时, 该模型也为如何将人类移动行为与社交行为关联并建模提供了新思路。


人类移动行为 人类动力学 人口分布 预测模型 社交移动 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brockmann D, Hufnagel L, Geisel T. The scaling laws of human travel. Nature, 2006, 439: 462–465CrossRefGoogle Scholar
  2. 2.
    González M, Hidalgo C, Barabási A L. Understanding individual human mobility patterns. Nature, 2008, 453: 779–782CrossRefGoogle Scholar
  3. 3.
    Song C, Koren T, Wang P, et al. Modelling the scaling properties of human mobility. Nat Phys, 2010, 6: 818–823CrossRefGoogle Scholar
  4. 4.
    Kang C, Ma X, Tong D, et al. Intra-urban human mobility patterns: an urban morphology perspective. Phys A, 2012, 391: 1702–1717CrossRefGoogle Scholar
  5. 5.
    Toole J L, Ulm M, González MC, et al. Inferring land use from mobile phone activity. In: Proceedings of the ACM SIGKDD International Workshop on Urban Computing, Beijing, 2012. 1–8Google Scholar
  6. 6.
    Jiang B, Yin J, Zhao S. Characterizing the human mobility pattern in a large street network. Phys Rev E, 2009, 80: 1–11Google Scholar
  7. 7.
    Bazzani A, Giorgini B, Rambaldi S, et al. Statistical laws in urban mobility from microscopic GPS data in the area of Florence. J Stat Mech-Theory Exp, 2010, 2010: P05001CrossRefGoogle Scholar
  8. 8.
    Liang X, Zheng X, Lv W, et al. The scaling of human mobility by taxis is exponential. Phys A, 2012, 391: 2135–2144CrossRefGoogle Scholar
  9. 9.
    Cheng Z, Caverlee J, Lee K, et al. Exploring millions of footprints in location sharing services. In: Proceedings of 5th International AAAI Conference on Weblogs and Social Media, Barcelona, 2001Google Scholar
  10. 10.
    Noulas A, Scellato S, Lambiotte R, et al. A tale of many cities: universal patterns in human urban mobility. PLoS ONE, 2012, 7: e37027CrossRefGoogle Scholar
  11. 11.
    Cho E, Myers S, Leskovec J. Friendship and mobility: user movement in location-based social networks. In: Proceedings of 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, 2011. 1082–1090Google Scholar
  12. 12.
    Liu Y, Sui Z, Kang C, et al. Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data. PLoS ONE, 2014, 9: e86026CrossRefGoogle Scholar
  13. 13.
    Veloso M, Phithakkitnukoon S, Bento C, et al. Exploratory study of urban flow using taxi traces. In: Proceedings of 1st Workshop on Pervasive Urban Applications (PURBA) in conjunction with 9th International Conference on Pervasive Computing, San Francisco, 2011Google Scholar
  14. 14.
    Roth C, Kang S M, Batty M, et al. Structure of urban movements: polycentric activity and entangled hierarchical flows. PLoS ONE, 2011, 6: e15923CrossRefGoogle Scholar
  15. 15.
    Peng C, Jin X, Wong K C, et al. Collective human mobility pattern from taxi trips in urban area. PLoS ONE, 2012, 7: e34487CrossRefGoogle Scholar
  16. 16.
    Han X, Hao Q, Wang B, et al. Origin of the scaling law in human mobility: hierarchy of traffic systems. Phys Rev E, 2011, 83: 036117CrossRefGoogle Scholar
  17. 17.
    Hu Y, Zhang J, Huan D, et al. Toward a general understanding of the scaling laws in human and animal mobility. Europhys Lett, 2011, 96: 38006CrossRefGoogle Scholar
  18. 18.
    Jia T, Jiang B, Carling K, et al. An empirical study on human mobility and its agent-based modeling. J Stat Mech-Theory Exp, 2012, 2012: P11024CrossRefGoogle Scholar
  19. 19.
    Schneider C M, Belik V, Couronn T, et al. Unravelling daily human mobility motifs. J Roy Soc Interface, 2013, 10, doi: 10.1098/rsif.2013.0246Google Scholar
  20. 20.
    Yan X Y, Han X P, Wang B H, et al. Diversity of individual mobility patterns and emergence of aggregated scaling laws. Sci Rep, 2013, 3: 2678Google Scholar
  21. 21.
    Barthélemy M. Spatial networks. Phys Rep, 2011, 499: 1–101MathSciNetCrossRefGoogle Scholar
  22. 22.
    Simini F, González M C, Maritan A, et al. A universal model for mobility and migration patterns. Nature, 2012, 484: 96–100CrossRefGoogle Scholar
  23. 23.
    Balcan D, Colizza V, Gonçalves B, et al. Multiscale mobility networks and the spatial spreading of infectious diseases. Proc Nat Acad Sci USA, 2009, 106: 21484–21489CrossRefGoogle Scholar
  24. 24.
    Jung W S, Wang F, Stanley H E. Gravity model in the Korean highway. Europhys Lett, 2008, 81: 48005CrossRefGoogle Scholar
  25. 25.
    Goh S, Lee K, Park J S, et al. Modification of the gravity model and application to the metropolitan Seoul subway system. Phys Rev E, 2012, 86: 026102CrossRefGoogle Scholar
  26. 26.
    Masucci A P, Serras J, Johansson A, et al. Gravity versus radiation models: on the importance of scale and heterogeneity in commuting flows. Phys Rev E, 2013, 88: 022812CrossRefGoogle Scholar
  27. 27.
    Liang X, Zhao J, Dong L, et al. Unraveling the origin of exponential law in intra-urban human mobility. Sci Rep, 2013, 3: 2983Google Scholar
  28. 28.
    Yan X Y, Zhao C, Fan Y, et al. Universal predictability of mobility patterns in cities. J Roy Soc Interface, 2014, 11: 20140834CrossRefGoogle Scholar
  29. 29.
    Simini F, Maritan A, Néda Z. Human mobility in a continuum approach. PLoS ONE, 2013, 8: e60069CrossRefGoogle Scholar
  30. 30.
    Ortúzar J D, Willumsen L G. Modelling Transport. 4th ed. New York: Wiley, 2011CrossRefGoogle Scholar
  31. 31.
    Stouffer S A. Intervening opportunities: a theory relating mobility and distance. Amer Sociol Rev, 1940, 5: 845–867CrossRefGoogle Scholar
  32. 32.
    Mandelbrot B B. The Fractal Geometry of Nature. New York: Freeman, 1982zbMATHGoogle Scholar
  33. 33.
    Appleby S. Multifractal characterization of the distribution pattern of the human population. Geogr Anal, 1996, 28: 147–160CrossRefGoogle Scholar
  34. 34.
    Ben-Avraham D, Havlin S. Diffusion and Reactions in Fractals and Disordered Systems. Cambridge: Cambridge University Press, 2005Google Scholar
  35. 35.
    Liben-Nowell D, Novak J, Kumar R, et al. Geographic routing in social networks. Proc Nat Acad Sci USA, 2005, 102: 11623–11628CrossRefGoogle Scholar
  36. 36.
    Backstrom L, Sun E, Marlow C. Find me if you can: improving geographical prediction with social and spatial proximity. In: Proceedings of 19th International Conference on World Wide Web, Raleigh, 2010. 61–70Google Scholar
  37. 37.
    Scellato S, Lambiotte R, Mascolo C. Socio-spatial properties of online location-based social networks. In: Proceedings of 5th International AAAI Conference on Weblogs and Social Media, Barcelona, 2011Google Scholar
  38. 38.
    Lenormand M, Huet S, Gargiulo F, et al. A universal model of commuting networks. PLoS ONE, 2012, 7: e45985CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Key Laboratory of Technology in Geo-spatial Information Processing and Application System, Institute of ElectronicsChinese Academy of SciencesBeijingChina
  2. 2.School of Economics and ManagementBeihang UniversityBeijingChina
  3. 3.State Key Laboratory of Software Development EnvironmentBeihang UniversityBeijingChina

Personalised recommendations