Science China Information Sciences

, Volume 58, Issue 11, pp 1–17 | Cite as

Variable solution structure can be helpful in evolutionary optimization

Research Paper

Abstract

Evolutionary algorithms are a family of powerful heuristic optimization algorithms where various representations have been used for solutions. Previous empirical studies have shown that for achieving a better efficiency of evolutionary optimization, it is often helpful to adopt rich representations (e.g., trees and graphs) rather than ordinary representations (e.g., binary coding). Such a recognition, however, has little theoretical justifications. In this paper, we present a running time analysis on genetic programming. In contrast to previous theoretical efforts focused on simple synthetic problems, we study two classical combinatorial problems, the maximum matching and the minimum spanning tree problems. Our theoretical analysis shows that evolving tree-structured solutions is much more efficient than evolving binary vector encoded solutions, which is also verified by experiments. The analysis discloses that variable solution structure might be helpful in evolutionary optimization when the solution complexity can be well controlled.

Keywords

evolutionary algorithms genetic programming maximum matching minimum spanning tree running time computational complexity 

演化优化中可变解结构的效用分析

摘要

创新点

  1. 1.

    对于采用可变结构来表示组合优化的解, 以往认为由于表达更加自然从而可帮助演化算法更好的进行优化, 当仅有实验支持、尚缺乏理论支撑, 本文对使用树形解结构的遗传规划算法进行时间复杂度分析, 在最大匹配和最小生成树问题上的分析结果显示了这种可变解结构的有效性, 为可变解结构的使用提供了理论证据。

     
  2. 2.

    对于遗传规划算法的时间复杂度分析, 以往主要在人造简单问题上开展, 本文首次给出在组合优化问题上的分析结果, 增进了对遗传规划算法的理论理解。

     

Keywords

演化算法 遗传规划 最大匹配 最小生成树 运行时间 计算复杂度 
112105 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bäck T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford: Oxford University Press, 1996MATHGoogle Scholar
  2. 2.
    Goldberg D E. Genetic Algorithms in Search, Optimization, and Machine Learning. Boston: Addison-Wesley, 1989MATHGoogle Scholar
  3. 3.
    Koza J R. Genetic programming as a means for programming computers by natural selection. Stat Comput, 1994, 4: 87–112CrossRefGoogle Scholar
  4. 4.
    Rothlauf F. Representations for Genetic and Evolutionary Algorithms. Berlin: Springer, 2006CrossRefGoogle Scholar
  5. 5.
    Hoai N X, McKay R I, Essam D. Representation and structural difficulty in genetic programming. IEEE Trans Evol Comput, 2006, 10: 157–166CrossRefGoogle Scholar
  6. 6.
    Poli R, Langdon W B, McPhee N F. A Field Guide to Genetic Programming. Barking: Lulu Enterprises, 2008Google Scholar
  7. 7.
    Koza J R. Human-competitive results produced by genetic programming. Genet Program Evol Mach, 2010, 11: 251–284CrossRefGoogle Scholar
  8. 8.
    Khan S, Baig A R, Ali A, et al. Unordered rule discovery using Ant Colony Optimization. Sci China Inf Sci, 2014, 57: 092116Google Scholar
  9. 9.
    Guo W, Liu G, Chen G, et al. A hybrid multi-objective PSO algorithm with local search strategy for VLSI partitioning. Front Comput Sci, 2014, 8: 203–216MathSciNetCrossRefGoogle Scholar
  10. 10.
    Poli R, Vanneschi L, Langdon W B, et al. Theoretical results in genetic programming: the next ten years? Genet Program Evol Mach, 2010, 11: 285–320CrossRefGoogle Scholar
  11. 11.
    Durrett G, Neumann F, O’Reilly U M. Computational complexity analysis of simple genetic programming on two problems modeling isolated program semantics. In: Proceedings of International Workshop on Foundations of Genetic Algorithms, Schwarzenberg, 2011. 69–80Google Scholar
  12. 12.
    Wagner M, Neumann F. Single- and multi-objective genetic programming: new runtime results for sorting. In: Proceedings of IEEE Congress on Evolutionary Computation, Beijing, 2014. 125–132Google Scholar
  13. 13.
    Kötzing T, Sutton A M, Neumann F, et al. The Max problem revisited: the importance of mutation in genetic programming. In: Proceedings of ACM Conference on Genetic and Evolutionary Computation, Philadelphia, 2012. 1333–1340Google Scholar
  14. 14.
    Nguyen A, Urli T, Wagner M. Single- and multi-objective genetic programming: new bounds for weighted order and majority. In: Proceedings of International Workshop on Foundations of Genetic Algorithms, Adelaide, 2013. 161–172Google Scholar
  15. 15.
    Kötzing T, Neumann F, Spöhel R. PAC learning and genetic programming. In: Proceedings of ACM Conference on Genetic and Evolutionary Computation, Dublin, 2011. 2091–2096Google Scholar
  16. 16.
    Neumann F. Computational complexity analysis of multi-objective genetic programming. In: Proceedings of ACM Conference on Genetic and Evolutionary Computation, Philadelphia, 2012. 799–806Google Scholar
  17. 17.
    Wagner M, Neumann F. Parsimony pressure versus multi-objective optimization for variable length representations. In: Proceedings of International Conference on Parallel Problem Solving from Nature, Taormina, 2012. 133–142CrossRefGoogle Scholar
  18. 18.
    He J, Yao X. Drift analysis and average time complexity of evolutionary algorithms. Artif Intell, 2001, 127: 57–85MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Droste S, Jansen T, Wegener I. On the analysis of the (1+1) evolutionary algorithm. Theor Comput Sci, 2002, 276: 51–81MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Auger A, Doerr B. Theory of Randomized Search Heuristics: Foundations and Recent Developments. Singapore: World Scientific, 2011CrossRefGoogle Scholar
  21. 21.
    Neumann F, Witt C. Bioinspired Computation in Combinatorial Optimization: Algorithms and Their Computational Complexity. Berlin: Springer-Verlag, 2010CrossRefGoogle Scholar
  22. 22.
    Giel O, Wegener I. Evolutionary algorithms and the maximum matching problem. In: Proceedings of Annual Symposium on Theoretical Aspects of Computer Science, Berlin, 2003. 415–426Google Scholar
  23. 23.
    Giel O, Wegener I. Maximum cardinality matchings on trees by randomized local search. In: Proceedings of ACM Conference on Genetic and Evolutionary Computation, Seattle, 2006. 539–546Google Scholar
  24. 24.
    Neumann F, Wegener I. Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theor Comput Sci, 2007, 378: 32–40MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Doerr B, Johannsen D, Winzen C. Multiplicative drift analysis. Algorithmica, 2012, 64: 673–697MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Raidl G R, Koller G, Julstrom B A. Biased mutation operators for subgraph-selection problems. IEEE Trans Evol Comput, 2006, 10: 145–156CrossRefGoogle Scholar
  27. 27.
    Neumann F, Wegener I. Minimum spanning trees made easier via multi-objective optimization. Nat Comput, 2006, 5: 305–319MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Yu Y, Zhou Z-H. A new approach to estimating the expected first hitting time of evolutionary algorithms. Artif Intell, 2008, 172: 1809–1832MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Laumanns M, Thiele L, Zitzler E. Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions. IEEE Trans Evol Comput, 2004, 8: 170–182CrossRefGoogle Scholar
  30. 30.
    Qian C, Yu Y, Zhou Z-H. An analysis on recombination in multi-objective evolutionary optimization. Artif Intell, 2013, 204: 99–119MathSciNetCrossRefGoogle Scholar
  31. 31.
    Giel O, Wegener I. Evolutionary algorithms and the maximum matching problem. University of Dortmund Technical Report CI 142/02. 2002Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.National Key Laboratory for Novel Software TechnologyNanjing UniversityNanjingChina
  2. 2.Collaborative Innovation Center of Novel Software Technology and IndustrializationNanjingChina

Personalised recommendations