Advertisement

Science China Information Sciences

, Volume 58, Issue 7, pp 1–10 | Cite as

Neural control of hypersonic flight dynamics with actuator fault and constraint

  • ShiXing Wang
  • Yu Zhang
  • YuQiang Jin
  • YongQuan Zhang
Research Paper Special Focus on Advanced Nonlinear Control of Hypersonic Flight Vehicles

Abstract

This paper deals with the control problem of actuator fault and saturation for hypersonic flightvehicles. Different from previous back-stepping design, the scheme is on transforming the dynamics into the“prediction function”. The controller is constructed with high gain observer, while the effect of fault andsaturation is compensated by neural networks. For the input saturation, the auxiliary dynamics is included todesign the adaptive learning law. The neural weights and filtered tracking error are guaranteed to be boundedvia Lyapunov approach. The effectiveness of the proposed method is verified by simulation of winged-conemodel.

Keywords

hypersonic flight vehicle no back-stepping neural network longitudinal dynamics stability 
070206 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Xu B, Shi Z K. An overview on flight dynamics and control approaches for hypersonic vehicles. Sci China Inf Sci,2015, 58: 070201Google Scholar
  2. 2.
    Xu H, Mirmirani M D, Ioannou P A. Adaptive sliding mode control design for a hypersonic flight vehicle. J GuidControl Dynam, 2004, 27: 829–838CrossRefGoogle Scholar
  3. 3.
    Gao D X, Sun Z Q. Fuzzy tracking control design for hypersonic vehicles via TS model. Sci China Inf Sci, 2011, 54:521–528Google Scholar
  4. 4.
    Ataei A, Wang Q. Non-linear control of an uncertain hypersonic aircraft model using robust sum-of-squares method. IET Contr Theory Appl, 2012, 6: 203–215MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gibson T E, Crespo L G, Annaswamy A M. Adaptive control of hypersonic vehicles in the presence of modelinguncertainties. In: Proceedings of American Control Conference, Saint Louis, 2009. 3178–3183.Google Scholar
  6. 6.
    Chavez F R, Schmidt D K. Uncertainty modeling for multivariable-control robustness analysis of elastic high-speedvehicles. J Guid Control Dynam, 1999, 22: 87–95CrossRefGoogle Scholar
  7. 7.
    Xu B, Sun F, Liu H, et al. Adaptive Kriging controller design for hypersonic flight vehicle via back-stepping. IETContr Theory Appl, 2012, 6: 487–497MathSciNetCrossRefGoogle Scholar
  8. 8.
    Xu B, Wang D, Sun F, et al. Direct neural discrete control of hypersonic flight vehicle. Nonlinear Dyn, 2012, 70:269–278zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Fiorentini L, Serrani A. Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model. Automatica, 2012, 48: 1248–1261zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhang Z, Hu J. Stability analysis of a hypersonic vehicle controlled by the characteristic model based adaptive controller. Sci China Inf Sci, 2012, 55: 2243–2256zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Gao D, Sun Z, Luo X, et al. Fuzzy adaptive control for hypersonic vehicle via backstepping method. Contr TheoryAppl, 2008, 5: 805–810Google Scholar
  12. 12.
    Chen M, Jiang B. Robust attitude control of near space vehicles with time-varying disturbances. Int J Contr AutomatSyst, 2013, 11: 182–187MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sigthorsson D, Jankovsky P, Serrani A, et al. Robust linear output feedback control of an airbreathing hypersonicvehicle. J Guid Control Dynam, 2008, 31: 1052–1066CrossRefGoogle Scholar
  14. 14.
    Chavez F R, Schmidt D K. Uncertainty modeling for multivariable-control robustness analysis of elastic high-speedvehicles. J Guid Control Dynam, 1999, 22: 87–95CrossRefGoogle Scholar
  15. 15.
    Hu Y N, Yuan Y, Min H B, et al. Multi-objective robust control based on fuzzy singularly perturbed models forhypersonic vehicles. Sci China Inf Sci, 2011, 54: 563–576zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Xu B. Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity. NonlinearDyn, 2015, 80: 1509–1520Google Scholar
  17. 17.
    Wang Q, Stengel R F. Robust nonlinear control of a hypersonic aircraft. J Guid Control Dynam, 2000, 23: 577–585CrossRefGoogle Scholar
  18. 18.
    Fiorentini L, Serrani A, Bolender M A, et al. Nonlinear robust adaptive control of flexible air-breathing hypersonicvehicles. J Guid Control Dynam, 2009, 32: 402–417CrossRefGoogle Scholar
  19. 19.
    Gao D X, Sun Z, Du T R. Dynamic surface control for hypersonic aircraft using fuzzy logic system. In: Proceedingsof IEEE International Conference on Automation and Logistics, Jinan,. 2314–2319Google Scholar
  20. 20.
    Xu B, Huang X, Wang D, et al. Dynamic surface control of constrained hypersonic flight models with parameterestimation and actuator compensation. Asian J Control, 2014, 16: 162–174zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Li H, Si Y, Wu L, et al. Guaranteed cost control with poles assignment for a flexible air-breathing hypersonic vehicle. Int J Syst Sci, 2011, 42: 863–876zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Wang N, Wu H N, Guo L. Coupling-observer-based nonlinear control for flexible air-breathing hypersonic vehicles. Nonlinear Dyn, 2014, 78: 2141–2159MathSciNetCrossRefGoogle Scholar
  23. 23.
    Farrell J A, Polycarpou M, Sharma M, et al. Command filtered backstepping. IEEE Trans Automat Contr, 2009, 54:1391–1395MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wang D, Huang J. Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systemsin strict-feedback form. IEEE Trans Neural Netw, 2005, 16: 195–202CrossRefGoogle Scholar
  25. 25.
    Xu B, Yang C, Shi Z. Reinforcement learning output feedback NN control using deterministic learning technique. IEEETrans Neural Netw Learn Syst, 2014, 25: 635–641CrossRefGoogle Scholar
  26. 26.
    Zhang T P, Ge S S. Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedbackform. Automatica, 2008, 44: 1895–1903zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Xu B, Shi Z, Yang C, et al. Composite neural dynamic surface control of a class of uncertain nonlinear systems instrict-feedback form. IEEE Trans Cybern, 2014, 44: 2626–2634CrossRefGoogle Scholar
  28. 28.
    Hojati M, Gazor S. Hybrid adaptive fuzzy identification and control of nonlinear systems. IEEE Trans Fuzzy Syst,2002, 10: 198–210CrossRefGoogle Scholar
  29. 29.
    Xu B, Shi Z, Yang C. Composite fuzzy control of a class of uncertain nonlinear systems with disturbance observer.Nonlinear Dyn, 2015, 80: 341–351MathSciNetCrossRefGoogle Scholar
  30. 30.
    Park J H, Kim S H, Moon C J. Adaptive neural control for strict-feedback nonlinear systems without backstepping. IEEE Trans Neural Netw, 2009, 20: 1204–1209CrossRefGoogle Scholar
  31. 31.
    Xu B, Gao D X, Wang S X. Adaptive neural control based on HGO for hypersonic flight vehicles. Sci China Inf Sci,2011, 54: 511–520zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • ShiXing Wang
    • 1
    • 2
  • Yu Zhang
    • 3
  • YuQiang Jin
    • 1
  • YongQuan Zhang
    • 4
  1. 1.Department of Control EngineeringNaval Aeronautical and Astronautical UniversityYantaiChina
  2. 2.Department of Computer Science and TechnologyTsinghua UniversityBeijingChina
  3. 3.School of Aeronautics and AstronauticsZhejiang UniversityHangzhouChina
  4. 4.Systems Engineering Research InstituteChina State Shipbuilding CorporationBeijingChina

Personalised recommendations